首页> 外文期刊>Mathematics and computers in simulation >Efficient and accurate numerical methods for the multidimensional convection-diffusion equations
【24h】

Efficient and accurate numerical methods for the multidimensional convection-diffusion equations

机译:多维对流扩散方程的高效精确数值方法

获取原文
获取原文并翻译 | 示例

摘要

A class of high order compact methods combined with local one-dimensional method have been studied to numerically solve multidimensional convection-diffusion equations. The methods are widely accepted due to their compactness, high accuracy. In this kind of methods the spatial derivatives are approximated implicitly rather than explicitly with smaller stencil but with higher accuracy. The local one-dimensional strategy is adopted in time to reduce the scale of algebraic equations resulting from numerical methods. This makes the multidimensional problems be easily coded. Based on analyzing the splitting error of the local one-dimensional method, a more accurate scheme is obtained through minor modification on the original scheme. By Von Neumann approach, we can find that the proposed schemes are unconditionally stable. Some numerical results are reported to illustrate that the schemes are robust, efficient and accurate. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:研究了一类与局部一维方法相结合的高阶紧致方法,以数值方式求解多维对流扩散方程。该方法由于其紧凑,高精度而被广泛接受。在这种方法中,以较小的模板但以较高的精度隐式而不是显式地近似空间导数。及时采用局部一维策略以减小由数值方法产生的代数方程的规模。这使得多维问题易于编码。在分析局部一维方法的分割误差的基础上,通过对原始方案进行较小的修改,可以获得更准确的方案。通过冯·诺依曼方法,我们可以发现所提出的方案是无条件稳定的。据报道一些数值结果表明该方案是鲁棒的,有效的和准确的。 (C)2019国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号