首页> 外文期刊>Mathematics and computers in simulation >Robust dissipativity analysis for uncertain neural networks with additive time-varying delays and general activation functions
【24h】

Robust dissipativity analysis for uncertain neural networks with additive time-varying delays and general activation functions

机译:具有附加时变时滞和一般激活函数的不确定神经网络的鲁棒耗散性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problem of delay-dependent robust dissipativity analysis for uncertain neural networks with additive time varying delays by using a more general activation function approach. Different from previous literature, some sufficient information on neuron activation function and additive time-varying delays have been considered. By constructing suitable Lyapunov-Krasovskii functionals (LKFs) with some new integral terms, and estimating their derivative by using newly developed single integral inequality that includes Jensen's inequality and Wirtinger-based integral inequality as a special case. A new delay-dependent less conservative global asymptotic stability and dissipative criteria have been established in the form of linear matrix inequalities (LMIs) technique. The effectiveness and advantages of the proposed results are verified by available standard numerical packages. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:本文通过使用更通用的激活函数方法,解决了具有附加时变时滞的不确定神经网络的时滞相关鲁棒耗散性分析问题。与以前的文献不同,已经考虑了一些有关神经元激活功能和附加时变延迟的信息。通过使用一些新的积分项构造合适的Lyapunov-Krasovskii泛函(LKFs),并通过使用新开发的单个积分不等式(包括特例Jensen不等式和基于Wirtinger的积分不等式)来估计其导数。以线性矩阵不等式(LMIs)技术的形式建立了新的依赖于延迟的不太保守的全局渐近稳定性和耗散准则。建议的结果的有效性和优势已通过可用的标准数值包验证。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号