首页> 外文期刊>Mathematics and computers in simulation >Data assimilation for real-time estimation of hydraulic states and unmeasured perturbations in a ID hydrodynamic model
【24h】

Data assimilation for real-time estimation of hydraulic states and unmeasured perturbations in a ID hydrodynamic model

机译:数据同化用于ID流体动力学模型中水力状态和未测扰动的实时估计

获取原文
获取原文并翻译 | 示例

摘要

Water management, in a variety of contexts and objectives, is a very important issue gaining increasing attention worldwide. In some places and during some periods, this is due to the scarcity of the water resource, and increasing competition for its use. In some others, it can be risk reduction due to flood events, or optimization of hydropower production along rivers. Hydraulic modeling, system analysis and automatic control are now parts of most water management projects. In order to operate hydraulic devices on irrigation canals or rivers, detailed information on the hydraulic state of the system must be available. This is particularly true when the control algorithms are based on Linear Quadratic Gaussian or Predictive Control approaches, using full state space models. Usually, the only known quantities are water levels, measured at limited locations. Sometimes, the discharge is known at specific locations (cross devices with gates, weirs, or hydropower turbines). The design of an observer is a very useful tool for reconstructing unmeasured data, such as discharges or water levels at other locations, unknown perturbations, such as inflows or outflows, and model parameters such as Manning-Strickler or hydraulic device discharge coefficients. Several approaches are able to provide such observers. The paper illustrates and compares the use of sequential Kalman Filter and sequential Particle Filter State Observer on these water management problems. Four scenarios have been selected to test the filters, based on twin experiences or using real field data. Both approaches proved to be efficient and robust. The Kalman Filter is very fast in terms of calculation time and convergence. The Particle Filter can handle the non-linear features of the model.
机译:在各种情况和目标下,水管理是一个非常重要的问题,在全世界引起越来越多的关注。在某些地方和某些时期,这是由于水资源的匮乏,以及对其使用的竞争日益加剧。在另一些情况下,则可能是由于洪水事件或沿河水电生产的优化而降低了风险。现在,水力建模,系统分析和自动控制已成为大多数水管理项目的一部分。为了在灌溉渠或河流上操作液压装置,必须提供有关系统液压状态的详细信息。当控制算法基于线性二次高斯或预测控制方法并使用全状态空间模型时,尤其如此。通常,唯一已知的数量是在有限位置测量的水位。有时,在特定位置(跨有闸门,堰或水力涡轮机的设备)已知放电情况。观察者的设计是一种非常有用的工具,可用于重建未测量的数据,例如其他位置的流量或水位,未知扰动(例如流入或流出)以及模型参数(例如Manning-Strickler或液压装置排放系数)。有几种方法可以提供这样的观察者。本文说明并比较了在这些水资源管理问题上使用顺序卡尔曼滤波器和顺序粒子滤波器状态观测器的情况。基于双重经验或使用实际数据,已选择了四种方案来测试过滤器。两种方法都被证明是有效且稳健的。卡尔曼滤波器在计算时间和收敛性方面非常快。粒子过滤器可以处理模型的非线性特征。

著录项

  • 来源
    《Mathematics and computers in simulation》 |2011年第10期|p.2201-2214|共14页
  • 作者单位

    UMR G-eau, Cemagref, 361, rue Jean-Francois Breton, BP 5095, 34196 Mompellier Cedex 5, France,Compagnie Nationale du Rhone, Depurtement Ouvrages Hydroelectriques el Fluviaux, 2, rue Andre Bonin, 69316 Lyon Cedex 04. Frame;

    UMR G-eau, Cemagref, 361, rue Jean-Francois Breton, BP 5095, 34196 Mompellier Cedex 5, France;

    Compagnie Nationale du Rhone, Depurtement Ouvrages Hydroelectriques el Fluviaux, 2, rue Andre Bonin, 69316 Lyon Cedex 04. Frame;

    LMFA UMR5509, Universite Lyon 1. 69622 Villeurbanne Cedex. Frame;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    data assimilation; kalman filter; monte carlo; river; canal;

    机译:数据同化卡尔曼滤波蒙特卡洛;河;运河;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号