首页> 外文期刊>Mathematics and computers in simulation >An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems
【24h】

An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems

机译:一种有效的量子免疫算法,可最大程度地减少混合流水车间问题的平均流时间

获取原文
获取原文并翻译 | 示例

摘要

Hybrid flow shop problem (HFSP) can be regarded as a generalized flow shop with multiple processing stages, of which at least one consists of parallel machines. HFSP is fairly common in flexible manufacturing and in process industry. This paper presents an efficient quantum immune algorithm (QIA) for HFSP. The objective is to find an optimal job sequence that minimize the mean flow time. Since HFSP has been proved to be NP-hard in a strong sense even in case of two stages, immune algorithm (IA) and quantum algorithm (QA) are used to solve the problem, respectively. To improve the performance of IA, an effective IA with new adaptive crossover and fractional parts mutation operators is proposed, which is called AIA. A randomly replacing strategy is employed to promote population diversity of QA, namely RRQA. In order to achieve better results, the paper proposes a quantum immune algorithm (QIA), which combines IA with QA to optimize the HFSP. Furthermore, all the improvements are added into QIA to be ARRQIA, which possesses the merits of global exploration, fast convergence, and robustness. The simulation results show that the proposed AIA significantly enhances the performance of IA. RRQA also produces more efficient and more stable results than QA. So far as ARRQIA is concerned, it outperforms the other algorithms in the paper and the average solution quality has increased by 3.37% and 6.82% compared with IA and QA on the total 60 instances.
机译:混合流水车间问题(HFSP)可以看作是具有多个处理阶段的广义流水车间,其中至少一个由并行机组成。 HFSP在柔性制造和过程工业中相当普遍。本文提出了一种用于HFSP的有效量子免疫算法(QIA)。目的是找到使平均流动时间最小的最佳作业顺序。由于即使在两个阶段的情况下,HFSP也已被证明具有很强的NP-hard性,因此分别使用免疫算法(IA)和量子算法(QA)解决了该问题。为了提高IA的性能,提出了一种具有新的自适应交叉和小数部分突变算子的有效IA,称为AIA。采用随机替代策略来促进QA的人口多样性,即RRQA。为了获得更好的结果,本文提出了一种量子免疫算法(QIA),该算法将IA和QA相结合来优化HFSP。此外,所有改进都添加到QIA中,称为ARRQIA,它具有全球勘探,快速收敛和鲁棒性的优点。仿真结果表明,提出的AIA可以显着提高IA的性能。 RRQA还比QA产生更有效,更稳定的结果。就ARRQIA而言,其性能优于本文中的其他算法,在60个实例中,平均解决方案质量与IA和QA相比分别提高了3.37%和6.82%。

著录项

  • 来源
    《Mathematics and computers in simulation》 |2012年第10期|1-25|共25页
  • 作者单位

    School of Mechatronic Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai 200072, China;

    School of Mechatronic Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai 200072, China;

    School of Mechatronic Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai 200072, China;

    School of Mechatronic Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai 200072, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hybrid flow shop scheduling; immune algorithm; quantum algorithm; mean flow time;

    机译:混合流水车间调度;免疫算法量子算法平均流动时间;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号