首页> 外文期刊>Mathematics and computers in simulation >Rapid quantification of uncertainty in permeability and porosity of oil reservoirs for enabling predictive simulation
【24h】

Rapid quantification of uncertainty in permeability and porosity of oil reservoirs for enabling predictive simulation

机译:快速定量分析油藏渗透率和孔隙度的不确定性,以进行预测性模拟

获取原文
获取原文并翻译 | 示例

摘要

One of the most difficult tasks in subsurface flow simulations is the reliable characterization of properties of the subsurface. A typical situation employs dynamic data integration such as sparse (in space and time) measurements to be matched with simulated responses associated with a set of permeability and porosity fields. Among the challenges found in practice are proper mathematical modeling of the flow, persisting heterogeneity in the porosity and permeability, and the uncertainties inherent in them. In this paper we propose a Bayesian framework Monte Carlo Markov Chain (MCMC) simulation to sample a set of characteristics of the subsurface from the posterior distribution that are conditioned to the production data. This process requires obtaining the simulated responses over many realizations. In reality, this can be a prohibitively expensive endeavor with possibly many proposals rejection, and thus wasting the computational resources. To alleviate it, we employ a two-stage MCMC that includes a screening step of a proposal whose simulated response is obtained via an inexpensive coarse-scale model. A set of numerical examples using a two-phase flow problem in an oil reservoir as a benchmark application is given to illustrate the procedure and its use in predictive simulation.
机译:地下流动模拟中最困难的任务之一是对地下性质的可靠表征。典型的情况是使用动态数据集成,例如稀疏(在空间和时间上)的测量结果,以与与一组渗透率和孔隙率字段关联的模拟响应相匹配。在实践中发现的挑战包括对流动进行正确的数学建模,孔隙率和渗透率的持续非均质性以及它们固有的不确定性。在本文中,我们提出了贝叶斯框架蒙特卡洛马尔可夫链(MCMC)模拟,以从后验分布中采样一系列地下特征,这些特征取决于生产数据。此过程需要获得许多实现的模拟响应。实际上,这可能是一项昂贵的工作,可能会拒绝许多建议,从而浪费了计算资源。为了缓解这种情况,我们采用了两阶段MCMC,其中包括提案的筛选步骤,该提案的模拟响应是通过廉价的粗尺度模型获得的。给出了一组使用油藏中的两相流问题作为基准应用的数值示例,以说明该过程及其在预测模拟中的用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号