首页> 外文期刊>Mathematics and computers in simulation >Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms
【24h】

Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms

机译:用于比较元启发式和确定性一维全局优化算法的操作区域

获取原文
获取原文并翻译 | 示例

摘要

Univariate continuous global optimization problems are considered in this paper. Several widely used multidimensional metaheuristic global optimization methods-genetic algorithm, differential evolution, particle swarm optimization, artificial bee colony algorithm, and firefly algorithm-are adapted to the univariate case and compared with three Lipschitz global optimization algorithms. For this purpose, it has been introduced a methodology allowing one to compare stochastic methods with deterministic ones by using operational characteristics originally proposed for working with deterministic algorithms only. As a result, a visual comparison of methods having different nature on classes of randomly generated test functions becomes possible. A detailed description of the new methodology for comparing, called “operational zones”, is given and results of wide numerical experiments with five metaheuristics and three Lipschitz algorithms are reported.
机译:本文考虑了单变量连续全局优化问题。将几种广泛使用的多维元启发式全局优化方法(遗传算法,差分进化,粒子群优化,人工蜂群算法和萤火虫算法)适用于单变量情况,并与三种Lipschitz全局优化算法进行了比较。为此,已经引入了一种方法,该方法允许通过使用最初仅建议用于确定性算法的操作特性来将随机方法与确定性方法进行比较。结果,可以对随机生成的测试函数的类别具有不同性质的方法进行视觉比较。给出了一种新的比较方法的详细描述,称为“工作区”,并报告了使用五种启发式方法和三种Lipschitz算法进行的广泛数值实验的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号