首页> 外文期刊>Mathematics and computers in simulation >On penalty-free formulations for multipatch isogeometric Kirchhoff-Love shells
【24h】

On penalty-free formulations for multipatch isogeometric Kirchhoff-Love shells

机译:关于多点等几何Kirchhoff-Love炮弹的免罚公式

获取原文
获取原文并翻译 | 示例

摘要

One of the distinguishing features of Isogeometric Analysis is the usage of the same function space for describing the global, pre-discretization domain of a partial differential equation and for approximating its solution. Quite often, however, the domain consists of several patches where each patch is parametrized by means of Non-Uniform Rational B-Splines (NURBS), and these patches are then glued together by means of continuity conditions. While techniques known from domain decomposition can be carried over to this situation, the analysis of shell structures is substantially more involved as additional angle preservation constraints between the patches might arise. In this paper, we address this issue in the stationary and transient case and make use of the analogy to constrained mechanical systems with joints and springs as interconnection elements. Starting point of our work is the bending strip method (Kiendl et al., 2010) which adds extra stiffness to the interface between adjacent patches and which is found to lead to a so-called stiff mechanical system that might suffer from ill-conditioning and severe step size restrictions during time integration. As a remedy, an alternative formulation is developed that improves the condition number of the system and removes the penalty parameter dependence. Moreover, we study another alternative formulation with continuity constraints applied to triples of control points at the interface. Numerical results show a comparison between the different formulations where we observe that the alternative formulations are well conditioned, independent of any penalty parameter and give the correct results.
机译:等几何分析的显着特征之一是使用相同的函数空间来描述偏微分方程的全局预离散域并近似求解。但是,该域通常由几个补丁组成,其中每个补丁都通过非均匀有理B样条(NURBS)进行参数设置,然后通过连续性条件将这些补丁粘合在一起。虽然可以将通过区域分解已知的技术用于这种情况,但是由于可能会在贴片之间出现其他角度保持约束,因此,壳结构的分析将更加复杂。在本文中,我们在稳态和瞬态情况下都解决了这一问题,并利用类比来约束以关节和弹簧为互连元素的机械系统。我们工作的起点是弯曲​​带方法(Kiendl等,2010),该方法为相邻贴片之间的界面增加了额外的刚度,并导致了所谓的刚性机械系统,该系统可能会遭受不适和时间积分期间存在严格的步长限制。作为补救措施,开发了一种替代的公式,它改善了系统的条件数并消除了惩罚参数的依赖性。此外,我们研究了另一种替代方案,该方案将连续性约束应用于界面处的三重控制点。数值结果显示了不同配方之间的比较,我们观察到替代配方条件良好,不受任何惩罚参数的影响,并给出正确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号