首页> 外文期刊>Mathematics and computers in simulation >Approximation of the differential operators on an adaptive spherical geodesic grid using spherical wavelets
【24h】

Approximation of the differential operators on an adaptive spherical geodesic grid using spherical wavelets

机译:利用球面小波逼近自适应球面测地线上的微分算子

获取原文
获取原文并翻译 | 示例

摘要

In this work, a new adaptive multi-level approximation of surface divergence and scalar-valued surface curl operator on a recursively refined spherical geodesic grid is presented. A hierarchical finite volume scheme based on the wavelet multi-level decomposition is used to approximate the surface divergence and scalar-valued surface curl operator. The multi-level structure provides a simple way to adapt the computation to the local structure of the surface divergence and scalar-value surface curl operator so that the high resolution computations are performed only in regions where singularities or sharp transitions occur. This multi-level approximation of the surface divergence operator is then used in an adaptive wavelet collocation method (AWCM) to solve two standard advection tests, solid-body rotation and divergent flow on the sphere. In contrast with other approximate schemes, this approach can be extended easily to other curved manifolds by considering appropriate coarse approximation to the desired manifold (here we used the icosahedral approximation to the sphere at the coarsest level) and using recursive surface subdivision.
机译:在这项工作中,提出了递归精制的球形测地网格上表面发散和标量值表面卷曲算子的新的自适应多级近似。基于小波多级分解的分层有限体积方案用于近似表面散度和标量值表面卷曲算子。多层结构提供了一种使计算适应于表面散度和标量值表面卷曲算子的局部结构的简单方法,从而仅在出现奇异或急剧过渡的区域中执行高分辨率计算。然后,将表面发散算子的这种多级逼近用于自适应小波配置方法(AWCM)中,以解决两个标准对流测试,即固体旋转和球体上的发散流。与其他近似方案相比,通过考虑对所需流形的适当粗略近似(此处我们在最粗糙的水平上使用二十面体近似球体)并使用递归曲面细分,可以轻松地将此方法扩展到其他弯曲流形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号