首页> 外文学位 >Recovery of the local gravity field by spherical regularization wavelets approximation and its numerical implementation.
【24h】

Recovery of the local gravity field by spherical regularization wavelets approximation and its numerical implementation.

机译:球面正则小波逼近恢复局部重力场及其数值实现。

获取原文
获取原文并翻译 | 示例

摘要

As an alternative to spherical harmonics in modeling the gravity field of the Earth, we built a multiresolution gravity model by employing spherical regularization wavelets in solving the inverse problem, i.e. downward propagation of the gravity signal to the Earth's surface. Scale discrete Tikhonov spherical regularization scaling function and wavelet packets were used to decompose and reconstruct the signal. We recovered the local gravity anomaly using only localized gravity measurements at the observing satellite's altitude of 300 km. When the upward continued gravity anomaly to the satellite altitude with a resolution 0.5° was used as simulated measurement inputs, our model could recover the local surface gravity anomaly at a spatial resolution of 1° with an RMS error between 1 and 10 mGal, depending on the topography of the gravity field. Our study of the effect of varying the data volume and altering the maximum degree of Legendre polynomials on the accuracy of the recovered gravity solution suggests that the short wavelength signals and the regions with high magnitude gravity gradients respond more strongly to such changes. When tested with simulated SGG measurements, i.e. the second order radial derivative of the gravity anomaly, at an altitude of 300 km with a 0.7° spatial resolution as input data, our model could obtain the gravity anomaly with an RMS error of 1 ~ 7 mGal at a surface resolution of 0.7° (< 80 km). The study of the impact of measurement noise on the recovered gravity anomaly implies that the solutions from SGG measurements are less susceptible to measurement errors than those recovered from the upward continued gravity anomaly, indicating that the SGG type mission such as GOCE would be an ideal choice for implementing our model. Our simulation results demonstrate the model's potential in determining the local gravity field at a finer scale than could be achieved through spherical harmonics, i.e. less than 100 km, with excellent performance in edge detection.
机译:作为球形谐波在地球重力场建模中的替代方法,我们通过使用球形正则小波解决逆问题(即重力信号向下传播到地球表面),建立了多分辨率重力模型。标度离散Tikhonov球面正则化标度函数和小波包用于分解和重构信号。我们仅使用观测卫星300 km的局部重力测量来恢复局部重力异常。当使用分辨率为0.5°的向上连续重力异常到卫星高度作为模拟测量输入时,我们的模型可以以1°的空间分辨率恢复局部表面重力异常,RMS误差在1到10 mGal之间,具体取决于重力场的地形。我们对更改数据量和更改Legendre多项式的最大次数对恢复的重力解的准确性的影响的研究表明,短波信号和具有高强度引力梯度的区域对此类变化的响应更强烈。当使用模拟的SGG测量值(即重力异常的二阶径向导数)在300 km的高度以0.7°空间分辨率作为输入数据进行测试时,我们的模型可以获得RMS误差为1〜7 mGal的重力异常。表面分辨率为0.7°(<80 km)。对测量噪声对恢复的重力异常的影响的研究表明,与从向上连续重力异常中恢复的解决方案相比,SGG测量的解决方案更不易受到测量误差的影响,这表明SGG型任务(例如GOCE)将是理想的选择用于实施我们的模型。我们的仿真结果表明,该模型在确定局部重力场方面具有比通过球谐函数(即小于100 km)可以实现的尺度更好的潜力,并且在边缘检测方面具有出色的性能。

著录项

  • 作者

    Shuler, Harrey Jeong.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Aerospace engineering.;Geophysics.;Geographic information science and geodesy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号