首页> 外文期刊>Mathematics and computers in simulation >Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations
【24h】

Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations

机译:SPDE近似的弱误差模拟中的蒙特卡洛与多层蒙特卡洛

获取原文
获取原文并翻译 | 示例

摘要

The simulation of the expectation of a stochastic quantity E[Y] by Monte Carlo methods is known to be computationally expensive especially if the stochastic quantity or its approximation Y_n is expensive to simulate, e.g., the solution of a stochastic partial differential equation. If the convergence of Y_n to Y in terms of the error |E[Y - Y_n]| is to be simulated, this will typically be done by a Monte Carlo method, i.e., |E[Y] - E_N[Y_n]| is computed. In this article upper and lower bounds for the additional error caused by this are determined and compared to those of |E_n[Y - Y_n]|, which are found to be smaller. Furthermore, the corresponding results for multilevel Monte Carlo estimators, for which the additional sampling error converges with the same rate as |E|Y - Y_n]|, are presented. Simulations of a stochastic heat equation driven by multiplicative Wiener noise and a geometric Brownian motion are performed which confirm the theoretical results and show the consequences of the presented theory for weak error simulations.
机译:已知通过蒙特卡洛方法模拟随机量E [Y]的期望在计算上是昂贵的,特别是如果随机量或其近似值Y_n对于例如模拟随机偏微分方程的解而言是昂贵的。如果根据误差| E [Y-Y_n] |将Y_n收敛到Y要模拟,通常将通过蒙特卡洛方法完成,即| E [Y]-E_N [Y_n] |计算。在本文中,确定了由此引起的附加错误的上限和下限,并将其与发现较小的| E_n [Y-Y_n] |的上限进行比较。此外,给出了多级蒙特卡洛估计器的相应结果,其附加采样误差以与| E | Y-Y_n] |相同的比率收敛。对乘性维纳噪声和几何布朗运动驱动的随机热方程进行了仿真,这证实了理论结果并显示了所提出的理论对弱误差仿真的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号