首页> 外文期刊>Mathematical structures in computer science >Computing knowledge in equational extensions of subterm convergent theories
【24h】

Computing knowledge in equational extensions of subterm convergent theories

机译:计算子技术融合理论的公式扩展知识

获取原文
获取原文并翻译 | 示例

摘要

We study decision procedures for two knowledge problems critical to the verification of security protocols, namely the intruder deduction and the static equivalence problems. These problems can be related to particular forms of context matching and context unification. Both problems are defined with respect to an equational theory and are known to be decidable when the equational theory is given by a subterm convergent term rewrite system (TRS). In this work, we extend this to consider a subterm convergent TRS defined modulo an equational theory, like Commutativity. We present two pairs of solutions for these important problems. The first solves the deduction and static equivalence problems in rewrite systems modulo shallow theories such as Commutativity. The second provides a general procedure that solves the deduction and static equivalence problems in subterm convergent systems modulo syntactic permutative theories, provided a finite measure is ensured. Several examples of such theories are also given.
机译:我们研究了两个知识问题的决策程序,对安全协议验证至关重要,即入侵扣除和静态等价问题。这些问题可以与特定形式的上下文匹配和上下文统一有关。对于等于实际理论来说,这两个问题都是众所周知的,并且当等同理论由子线收敛术语重写系统(TRS)给出时是可判定的。在这项工作中,我们延长了这一点,以考虑下限定义的模型变量理论,如换向。我们为这些重要问题提出了两对解决方案。首先解决了重写系统模型浅层理论等重写系统中的扣除和静态等效问题。第二个提供了一种通过求解子项融合系统模型句法偏移理论中的扣除和静态等效问题的一般过程,提供了有限度量。还给出了这些理论的几个例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号