首页> 外文期刊>Mathematical structures in computer science >Expressiveness modulo bisimilarity of regular expressions with parallel composition
【24h】

Expressiveness modulo bisimilarity of regular expressions with parallel composition

机译:具有并行组成的正则表达式的表达模双相似性

获取原文
获取原文并翻译 | 示例

摘要

The languages accepted by finite automata are precisely the languages denoted by regular expressions. In contrast, finite automata may exhibit behaviours that cannot be described by regular expressions up to bisimilarity. In this paper, we consider extensions of the theory of regular expressions with various forms of parallel composition and study the effect on expressiveness. First we prove that adding pure interleaving to the theory of regular expressions strictly increases its expressiveness modulo bisimilarity. Then, we prove that replacing the operation for pure interleaving by ACP-style parallel composition gives a further increase in expressiveness, still insufficient, however, to facilitate the expression of all finite automata up to bisimilarity. Finally, we prove that the theory of regular expressions with ACP-style parallel composition and encapsulation is expressive enough to express all finite automata up to bisimilarity. Our results extend the expressiveness results obtained by Bergstra, Bethke and Ponse for process algebras with (the binary variant of) Kleene's star operation.
机译:有限自动机所接受的语言正是正则表达式表示的语言。相比之下,有限自动机可能会表现出无法用正则表达式描述的行为,直到双相似性为止。在本文中,我们考虑将正则表达式理论扩展为各种形式的并行组成,并研究其对表达能力的影响。首先,我们证明将纯交织添加到正则表达式理论中,可以严格提高其表达性模双相似性。然后,我们证明用ACP样式的并行合成替换纯交织操作会进一步提高表达能力,但是仍然不足以促进所有有限自动机的表达,直至双相似性。最后,我们证明具有ACP样式的并行组合和封装的正则表达式理论具有足够的表达力,可以表达所有有限的自动机,直至双相似性。我们的结果扩展了Bergstra,Bethke和Ponse对于具有Kleene星运算(的二元变体)的过程代数所获得的表示性结果。

著录项

  • 来源
    《Mathematical structures in computer science》 |2016年第6期|933-968|共36页
  • 作者单位

    CWI, P.O. Box 94079, NL-1090 GB, the Netherlands,Department of Mathematics and Computer Science, Eindhoven University of Technology,P.O. Box 513, NL-5600 MB Eindhoven, the Netherlands;

    Department of Mathematics and Computer Science, Eindhoven University of Technology,P.O. Box 513, NL-5600 MB Eindhoven, the Netherlands,Department of Computer Science, Vrije Universiteit Amsterdam,De Boelelaan 1081, NL-1081 HV Amsterdam, the Netherlands;

    Faculty of Science, Technology and Communication, University of Luxembourg,6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg;

    Department of Mathematics and Computer Science, Eindhoven University of Technology,P.O. Box 513, NL-5600 MB Eindhoven, the Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号