首页> 外文期刊>Mathematical structures in computer science >Non-size increasing graph rewriting for natural language processing
【24h】

Non-size increasing graph rewriting for natural language processing

机译:用于自然语言处理的非大小增加图形重写

获取原文
获取原文并翻译 | 示例

摘要

A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘Max decides to leave,’ ‘Max’ is the subject of the both predicates ‘to decide’ and ‘to leave.’ Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems.
机译:自然语言处理(NLP)中的大量工作使用树结构作为一类公民数学结构来表示语言结构,例如解析的句子或特征结构。但是,某些语言现象无法适当地应付树木。例如,在句子“麦克斯决定离开”中,“麦克斯”是谓词“决定”和“离开”的主语。基于树的语言形式主义通常使用某种编码来管理句子,如上例所示。在以前的论文中(Bonfante等人,2011; Guillaume和Perrier,2012),我们讨论了使用图而不是树来处理语言结构的兴趣,并且我们展示了如何使用图重写来处理它们,例如将句子语法转换为其语义。我们的实验表明,将图形重写应用到NLP并不需要常规图形重写设置的全部计算能力。最重要的观察结果是,最终结构中的所有图形顶点在某种意义上都可以根据输入数据“预测”,因此我们可以考虑使用不加大小图形重写的框架。在我们以前的论文中,我们正式描述了我们使用的“图形重写”演算,我们的目的是研究与该演算有关的终止的理论方面。鉴于通常无法确定终止,我们基于权重定义终止标准,我们证明了加权重写系统的终止,并给出了这些重写系统的派生长度的复杂性界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号