首页> 外文期刊>Mathematical Programming >Logarithmic SUMT limits in convex programming
【24h】

Logarithmic SUMT limits in convex programming

机译:凸规划中的对数SUMT极限

获取原文
获取原文并翻译 | 示例

摘要

The limits of a class of primal and dual solution trajectories associated with the Sequential Unconstrained Minimization Technique (SUMT) are investigated for convex programming problems with non-unique optima. Logarithmic barrier terms are assumed. For linear programming problems, such limits – of both primal and dual trajectories – are strongly optimal, strictly complementary, and can be characterized as analytic centers of, loosely speaking, optimality regions. Examples are given, which show that those results do not hold in general for convex programming problems. If the latter are weakly analytic (Bank et al. [3]), primal trajectory limits can be characterized in analogy to the linear programming case and without assuming differentiability. That class of programming problems contains faithfully convex, linear, and convex quadratic programming problems as strict subsets. In the differential case, dual trajectory limits can be characterized similarly, albeit under different conditions, one of which suffices for strict complementarity.
机译:针对具有非唯一最优性的凸规划问题,研究了与顺序无约束最小化技术(SUMT)相关的一类原始和对偶解轨迹的极限。假设对数势垒项。对于线性规划问题,原始轨迹和对偶轨迹的这种限制都是极佳的,是严格互补的,并且可以概括为最佳区域的分析中心。给出的例子表明,对于凸编程问题,这些结果通常不成立。如果后者是弱分析的(Bank等人,[3]),则原始轨迹极限可以类似于线性规划的情况来表征,而无需承担可微性。这类编程问题包含忠实的凸,线性和凸二次规划问题,作为严格的子集。在差分情况下,即使在不同条件下,也可以类似地表征双重轨迹极限,其中之一足以满足严格的互补要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号