首页> 外文期刊>Mathematical Programming >The C 3 Theorem and a D 2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification
【24h】

The C 3 Theorem and a D 2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification

机译:大规模随机混合整数规划的C 3 定理和D 2 算法:集凸化

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the two-stage stochastic integer programming problem, with an emphasis on instances in which integer variables appear in the second stage. Drawing heavily on the theory of disjunctive programming, we characterize convexifications of the second stage problem and develop a decomposition-based algorithm for the solution of such problems. In particular, we verify that problems with fixed recourse are characterized by scenario-dependent second stage convexifications that have a great deal in common. We refer to this characterization as the C 3 (Common Cut Coefficients) Theorem. Based on the C 3 Theorem, we develop a decomposition algorithm which we refer to as Disjunctive Decomposition (D 2). In this new class of algorithms, we work with master and subproblems that result from convexifications of two coupled disjunctive programs. We show that when the second stage consists of 0-1 MILP problems, we can obtain accurate second stage objective function estimates after finitely many steps. This result implies the convergence of the D 2 algorithm.
机译:本文考虑了两阶段随机整数规划问题,重点讨论了在第二阶段出现整数变量的情况。大量利用析取编程的理论,我们刻画了第二阶段问题的凸性,并开发了基于分解的算法来解决此类问题。尤其是,我们验证了追索权固定的问题的特征在于与场景相关的第二阶段凸现,这些凸现具有很多共同点。我们称这种表征为C 3 (通用切系数)定理。基于C 3 定理,我们开发了一种分解算法,称为“析取分解”(D 2 )。在这类新的算法中,我们处理由两个耦合的析取程序的凸性导致的主问题和子问题。我们表明,当第二阶段包含0-1个MILP问题时,经过有限的多个步骤,我们可以获得准确的第二阶段目标函数估计。这个结果暗示了D 2 算法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号