首页> 外文期刊>Mathematical Programming >On the equivalence of the max-min transportation lower bound and the time-indexed lower bound for single-machine scheduling problems
【24h】

On the equivalence of the max-min transportation lower bound and the time-indexed lower bound for single-machine scheduling problems

机译:单机调度问题的最大-最小运输下限和时间索引下限的等价关系

获取原文
获取原文并翻译 | 示例

摘要

New observations are made about two lower bound schemes for single-machine min-sum scheduling problems. We find that the strongest bound of those provided by transportation problem relaxations can be computed by solving a linear program. We show the equivalence of this strongest bound and the bound provided by the LP relaxation of the time-indexed integer programming formulation. These observations lead to a new lower bound scheme that yields fast approximation of the time-indexed bound. Several techniques are developed to facilitate the effective use of the new lower bound in branch-and-bound. Numerical experiments are conducted on 375 benchmark problems of the total weighted tardiness problem from OR-Library. Results obtained with our new method are spectacular; we are able to solve all 125 open problems to optimality.
机译:关于单机最小和调度问题的两个下限方案,有了新的观察。我们发现,可以通过求解线性程序来计算运输问题松弛所提供的最强边界。我们显示了这个最强边界的等价性,以及时间索引整数规划公式的LP松弛所提供的等价性。这些观察结果导致了一种新的下界方案,该方案可以快速近似时间索引界限。开发了几种技术来促进有效使用分支定界中的新下限。对OR-Library的总加权拖延问题的375个基准问题进行了数值实验。用我们的新方法获得的结果是惊人的。我们能够最大程度地解决所有125个未解决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号