首页> 外文期刊>Mathematical Programming >On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers
【24h】

On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers

机译:关于线性约束拉格朗日方法和稳定牛顿SQP方法对临界乘数的吸引

获取原文
获取原文并翻译 | 示例

摘要

It has been previously demonstrated that in the case when a Lagrange multiplier associated to a given solution is not unique, Newton iterations [e.g., those of sequential quadratic programming (SQP)] have a tendency to converge to special multipliers, called critical multipliers (when such critical multipliers exist). This fact is of importance because critical multipliers violate the second-order sufficient optimality conditions, and this was shown to be the reason for slow convergence typically observed for problems with degenerate constraints (convergence to noncritical multipliers results in superlinear rate despite degeneracy). Some theoretical and numerical validation of this phenomenon can be found in Izmailov and Solodov (Comput Optim Appl 42:231–264, 2009; Math Program 117:271–304, 2009). However, previous studies concerned the basic forms of Newton iterations. The question remained whether the attraction phenomenon still persists for relevant modifications, as well as in professional implementations. In this paper, we answer this question in the affirmative by presenting numerical results for the well known MINOS and SNOPT software packages applied to a collection of degenerate problems. We also extend previous theoretical considerations to the linearly constrained Lagrangian methods and to the quasi-Newton SQP, on which MINOS and SNOPT are based. Experiments also show that in the stabilized version of SQP the attraction phenomenon still exists but appears less persistent.
机译:先前已经证明,在与给定解关联的拉格朗日乘数不是唯一的情况下,牛顿迭代[例如,顺序二次编程(SQP)的那些]有趋于收敛到称为临界乘数的特殊乘数的趋势(当存在此类关键乘数)。这个事实很重要,因为关键乘子违反了二阶足够的最优条件,这被证明是通常会在退化约束问题上观察到缓慢收敛的原因(尽管退化,收敛到非关键乘子仍会导致超线性速率)。在Izmailov和Solodov中可以找到对此现象的一些理论和数值验证(Comput Optim Appl 42:231–264,2009; Math Program 117:271–304,2009)。但是,先前的研究涉及牛顿迭代的基本形式。问题仍然是,吸引力现象是否仍然存在以进行相关的修改以及在专业实施中。在本文中,我们通过给出用于退化问题集合的著名MINOS和SNOPT软件包的数值结果来肯定地回答这个问题。我们还将先前的理论考虑扩展到线性约束拉格朗日方法和MINOS和SNOPT所基于的拟牛顿SQP。实验还表明,在稳定版本的SQP中,吸引力现象仍然存在,但看起来不那么持久。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号