首页> 外文期刊>Mathematical Programming >The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets
【24h】

The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets

机译:具有任意索引集的半无限规划的自适应凸算法

获取原文
获取原文并翻译 | 示例

摘要

A numerical solution method for semi-infinite optimization problems with arbitrary, not necessarily box-shaped, index sets is presented. Following the ideas of Floudas and Stein (SIAM J Optim 18:1187–1208, 2007), convex relaxations of the lower level problem are adaptively constructed and then reformulated as mathematical programs with complementarity constraints and solved. Although the index set is arbitrary, this approximation produces feasible iterates for the original problem. The convex relaxations and needed parameters are constructed with ideas of the αBB method of global optimization and interval methods. It is shown that after finitely many steps an ${epsilon}$ -stationary point of the original semi-infinite problem is reached. A numerical example illustrates the performance of the proposed method.
机译:提出了一种具有任意(不一定是箱形)索引集的半无限优化问题的数值求解方法。遵循Floudas和Stein(SIAM J Optim 18:1187-1208,2007)的思想,自适应地构造了下层问题的凸松弛,然后将其重新构造为具有互补约束的数学程序并加以求解。尽管索引集是任意的,但是这种近似对于原始问题产生了可行的迭代。凸松弛和所需参数是根据全局优化的αBB方法和区间方法构造的。结果表明,经过有限多步后,原始半无限问题的ε平稳点达到了。数值例子说明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号