首页> 外文期刊>Mathematical Programming >Smoothing methods for nonsmooth, nonconvex minimization
【24h】

Smoothing methods for nonsmooth, nonconvex minimization

机译:非平滑,非凸最小化的平滑方法

获取原文
获取原文并翻译 | 示例

摘要

We consider a class of smoothing methods for minimization problems where the feasible set is convex but the objective function is not convex, not differentiable and perhaps not even locally Lipschitz at the solutions. Such optimization problems arise from wide applications including image restoration, signal reconstruction, variable selection, optimal control, stochastic equilibrium and spherical approximations. In this paper, we focus on smoothing methods for solving such optimization problems, which use the structure of the minimization problems and composition of smoothing functions for the plus function (x)+. Many existing optimization algorithms and codes can be used in the inner iteration of the smoothing methods. We present properties of the smoothing functions and the gradient consistency of subdifferential associated with a smoothing function. Moreover, we describe how to update the smoothing parameter in the outer iteration of the smoothing methods to guarantee convergence of the smoothing methods to a stationary point of the original minimization problem.
机译:我们考虑一类用于最小化问题的平滑方法,其中可行集是凸的,但目标函数不是凸的,不可微的,甚至在解决方案中甚至不是局部Lipschitz。这种优化问题源于广泛的应用,包括图像恢复,信号重建,变量选择,最优控制,随机平衡和球面近似。在本文中,我们重点介绍用于解决此类优化问题的平滑方法,该方法使用最小化问题的结构并将平滑函数的组成用作加法函数(x)+ 。许多现有的优化算法和代码可用于平滑方法的内部迭代。我们介绍了平滑函数的属性以及与平滑函数相关的次微分的梯度一致性。此外,我们描述了如何在平滑方法的外部迭代中更新平滑参数,以确保平滑方法收敛到原始最小化问题的平稳点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号