首页> 外文期刊>Mathematical Problems in Engineering >On the Polyconvolution with the Weight Function for the Fourier Cosine, Fourier Sine, and the Kontorovich-Lebedev Integral Transforms
【24h】

On the Polyconvolution with the Weight Function for the Fourier Cosine, Fourier Sine, and the Kontorovich-Lebedev Integral Transforms

机译:关于具有傅立叶余弦,傅立叶正弦和Kontorovich-Lebedev积分变换的加权函数的多卷积

获取原文
获取原文并翻译 | 示例

摘要

The polyconvolution with the weight function y of three functions f, g, and h for the integral transforms Fourier sine (F_s), Fourier cosine (F_c), and Kontorovich-Lebedev (K_(iy)), which is denoted by ~γ*(f,g,h)(x), has been constructed. This polyconvolution satisfies the following factorization property Fc(~γ*(f,g,h))(y) = sin y(F_sf)(y) · (F_cg)(y) · (K_(iy)h)(y), for all y > 0. The relation of this polyconvolution to the Fourier convolution and the Fourier cosine convolution has been obtained. Also, the relations between the polyconvolution product and others convolution product have been established. In application, we consider a class of integral equations with Toeplitz plus Hankel kernel whose solution in closed form can be obtained with the help of the new polyconvolution. An application on solving systems of integral equations is also obtained.
机译:具有三个函数f,g和h的权函数y的多重卷积用于积分变换傅里叶正弦(F_s),傅里叶余弦(F_c)和Kontorovich-Lebedev(K_(iy)),用〜γ*表示(f,g,h)(x)已构建。该多卷积满足以下分解性质Fc(〜γ*(f,g,h))(y)= sin y(F_sf)(y)·(F_cg)(y)·(K_(iy)h)(y) ,对于所有y>0。已经获得了该多卷积与傅里叶卷积和傅里叶余弦卷积的关系。而且,已经建立了多卷积积和其他卷积积之间的关系。在应用中,我们考虑一类带有Toeplitz加上Hankel核的积分方程,可以借助新的多卷积获得封闭形式的解。还获得了积分方程组求解的应用。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2010年第2期|p.4.1-4.16|共16页
  • 作者

    Nguyen Xuan Thao;

  • 作者单位

    Faculty of Applied Mathematics and Informatics, Hanoi University of Technology, No. 1, Dai Co Viet, Hanoi, Vietnam;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号