首页> 外文期刊>Mathematical Problems in Engineering >An Algorithm for Optimally Fitting a Wiener Model
【24h】

An Algorithm for Optimally Fitting a Wiener Model

机译:最优拟合维纳模型的算法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this work is to present a new methodology for fitting Wiener networks to datasets with a large number of variables. Wiener networks have the ability to model a wide range of data types, and their structures can yield parameters with phenomenological meaning. There are several challenges to fitting such a model: model stiffness, the nonlinear nature of a Wiener network, possible overfitting, and the large number of parameters inherent with large input sets. This work describes a methodology to overcome these challenges by using several iterative algorithms under supervised learning and fitting subsets of the parameters at a time. This methodology is applied to Wiener networks that are used to predict blood glucose concentrations. The predictions of validation sets from models fit to four subjects using this methodology yielded a higher correlation between observed and predicted observations than other algorithms, including the Gauss-Newton and Levenberg-Marquardt algorithms.
机译:这项工作的目的是提出一种新的方法,用于将维纳网络拟合到具有大量变量的数据集。 Wiener网络具有对各种数据类型进行建模的能力,并且它们的结构可以产生具有现象学意义的参数。拟合这种模型存在几个挑战:模型刚度,维纳网络的非线性特性,可能的过度拟合以及大输入集固有的大量参数。这项工作描述了一种方法,可以通过在监督学习和一次拟合参数子集下使用几种迭代算法来克服这些挑战。该方法学应用于用于预测血糖浓度的维纳网络。与其他算法(包括高斯-牛顿算法和Levenberg-Marquardt算法)相比,使用此方法从模型拟合的验证集对四个对象的预测得出的观测值与预测值之间的相关性更高。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2011年第speca期|p.570509.1-570509.15|共15页
  • 作者单位

    Intel Corporation, Hillsboro, OR 97124, USA;

    Department of Statistics, Iowa State University, Ames, IA 50010, USA,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50010, USA;

    BodyMedia Inc., 420 Fort Duquesne Boulevard, Pittsburgh, PA 15222, USA;

    BodyMedia Inc., 420 Fort Duquesne Boulevard, Pittsburgh, PA 15222, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号