首页> 外文期刊>Mathematical Problems in Engineering >Radial Basis Function Neural Network Application to Measurement and Control of Shunt Reactor Overvoltages Based on Analytical Rules
【24h】

Radial Basis Function Neural Network Application to Measurement and Control of Shunt Reactor Overvoltages Based on Analytical Rules

机译:径向基函数神经网络在分析规则基础上的并联电抗器过电压测量与控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an artificial intelligence application to measure switching overvoltages caused by shunt reactor energization by applying analytical rules. In a small power system that appears in an early stage of a black start of a power system, an overvoltage could be caused by core saturation on the energization of a reactor with residual flux. A radial basis function (RBF) neural network has been used to estimate the overvoltages due to reactor energization. Equivalent circuit parameters of network have been used as artificial neural network (ANN) inputs; thus, RBF neural network is applicable to every studied system. The developed ANN is trained with the worst case of the switching angle and remanent flux and tested for typical cases. The simulated results for a partial of 39-bus New England test system show that the proposed technique can measure the peak values and duration of switching overvoltages with good accuracy.
机译:本文介绍了一种人工智能应用程序,它通过应用分析规则来测量由并联电抗器通电引起的开关过电压。在出现在电力系统黑启动初期的小型电力系统中,过剩的电抗器通电时,铁心饱和可能会导致过电压。径向基函数(RBF)神经网络已用于估算由于反应堆通电而引起的过电压。网络的等效电路参数已用作人工神经网络(ANN)输入;因此,RBF神经网络适用于每个研究的系统。所开发的人工神经网络在开关角和剩余磁通的最坏情况下接受过培训,并针对典型情况进行了测试。对部分39辆新英格兰测试系统的仿真结果表明,所提出的技术可以很好地测量开关过电压的峰值和持续时间。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2012年第8期|647305.1-647305.14|共14页
  • 作者单位

    Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 85141-43131, Iran;

    Department of Electrical Engineering, University of Kashan, Kashan 87317-51167, Iran;

    Grenoble Electrical Engineering Lab (G2ELab), Grenoble INP, BP46, 38402 Saint Martin d'Heres Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号