首页> 外文期刊>Mathematical Problems in Engineering >Vibro-Impact System Based on Forced Oscillations of Heavy Mass Particle along a Rough Parabolic Line
【24h】

Vibro-Impact System Based on Forced Oscillations of Heavy Mass Particle along a Rough Parabolic Line

机译:基于重质点沿粗抛物线强迫振动的振动冲击系统

获取原文
获取原文并翻译 | 示例

摘要

This paper analyses motion trajectory of vibro-impact system based on the oscillator moving along the rough parabolic line in the vertical plane, under the action of external single-frequency force. Nonideality of the bond originates of sliding Coulomb's type friction force with coefficient µ = tga_0. The oscillator consists of one heavy mass particle whose forced motion is limited by two angular elongation fixed limiters. The differential equation of motion of the analyzed vibro-impact system, which belongs to the group of common second order nonhomogenous nonlinear differential equations, cannot be solved explicitly (in closed form). For its approximate solving, the software package WOLFRAM Mathematica 7 is used. The results are tested by using the software package MATLAB R2008a. The combination of analytical-numerical results for the defined parameters of analyzed vibro-impact system is a base for the motion analysis visualization, which was the primary objective of this analytic research. Upon the phase portrait of the heavy mass particle obtained, the energy of the considered vibro-impact system is analyzed. During the graphical visualization of the energetic changes, one of the steps is the process of the phase trajectory equations determination. For this determination, we have used interpolation process that utilizes Lagrange interpolation polynomial.
机译:本文基于振动器在外部单频力的作用下沿着粗糙抛物线在垂直平面上运动而对振动冲击系统的运动轨迹进行分析。键的非理想性源自系数为μ= tga_0的库仑滑动摩擦力。振荡器由一个重粒子组成,其强制运动受两个角伸长率固定限制器限制。所分析的振动冲击系统的运动微分方程属于常见的二阶非齐次非线性微分方程组,无法明确求解(封闭形式)。为了对其进行近似求解,使用了软件包WOLFRAM Mathematica 7。使用软件包MATLAB R2008a测试结果。分析振动结果的定义参数的分析数值结果的组合是运动分析可视化的基础,这是此分析研究的主要目标。根据获得的重质颗粒的相图,分析了所考虑的振动冲击系统的能量。在高能变化的图形化可视化过程中,步骤之一是确定相轨迹方程式的过程。对于此确定,我们使用了利用Lagrange插值多项式的插值过程。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2012年第6期|846390.1-846390.17|共17页
  • 作者单位

    Faculty of Technical Sciences, University of Pristina, Knez Milos Street, No. 7, 38220 Kosovskn Mitrovica, Serbia;

    Faculty of Technical Sciences, University of Pristina, Knez Milos Street, No. 7, 38220 Kosovskn Mitrovica, Serbia;

    Faculty of Technical Sciences, University of Pristina, Knez Milos Street, No. 7, 38220 Kosovskn Mitrovica, Serbia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号