首页> 外文期刊>Mathematical Problems in Engineering >Buckling Analyses of Axially Functionally Graded Nonuniform Columns with Elastic Restraint Using a Localized Differential Quadrature Method
【24h】

Buckling Analyses of Axially Functionally Graded Nonuniform Columns with Elastic Restraint Using a Localized Differential Quadrature Method

机译:局部约束正交积分法分析具有弹性约束的轴向功能梯度非均匀柱的屈曲

获取原文
获取原文并翻译 | 示例

摘要

A localized differential quadrature method (LDQM) is introduced for buckling analysis of axially functionally graded nonuniform columns with elastic restraints. Weighting coefficients of differential quadrature discretization are obtained making use of neighboring points in forward and backward type schemes for the reference grids near the beginning and end boundaries of the physical domain, respectively, and central type scheme for the reference grids inside the physical domain. Boundary conditions are directly implemented into weighting coefficient matrices, and there is no need to use fictitious points near the boundaries. Compatibility equations are not required because the governing differential equation is discretized only once for each reference grid using neighboring points and variation of flexural rigidity is taken to be continuous in the axial direction. A large case of columns having different variations of cross-sectional profile and modulus of elasticity in the axial direction are considered. The results for nondimensional critical buckling loads are compared to the analytical and numerical results available in the literature. Some new results are also given. Comparison of the results shows the potential of the LDQM for solving such generalized eigenvalue problems governed by fourth-order variable coefficient differential equations with high accuracy and less computational effort.
机译:引入局部差分正交方法(LDQM)来对具有弹性约束的轴向功能梯度不均匀柱进行屈曲分析。通过分别在物理域的开始和结束边界附近的参考网格的向前和向后类型方案中使用相邻点,以及在物理域内部的参考网格的中心类型方案中,使用相邻点来获得差分正交离散化的加权系数。边界条件直接实现在加权系数矩阵中,无需在边界附近使用虚拟点。不需要兼容性方程,因为对于控制网格的微分方程,每个参考网格仅使用相邻点离散一次,并且抗弯刚度的变化在轴向上是连续的。考虑到大的情况,在轴向方向上截面轮廓和弹性模量具有不同的变化。将无量纲临界屈曲载荷的结果与文献中提供的分析和数值结果进行比较。还给出了一些新结果。结果比较表明,LDQM可以解决这类由四阶变系数微分方程控制的广义特征值问题,具有较高的准确性和较少的计算量。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第8期|793062.1-793062.12|共12页
  • 作者单位

    Mechanical Engineering Department, Faculty of Engineering, Pamukkale University, Kinikli Campus, 20070 Denizli, Turkey;

    Mechanical Engineering Department, Faculty of Engineering, Pamukkale University, Kinikli Campus, 20070 Denizli, Turkey;

    Mechanical Engineering Department, Faculty of Engineering, Pamukkale University, Kinikli Campus, 20070 Denizli, Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号