首页> 外文期刊>Mathematical Problems in Engineering >A Novel Machine Learning Based Method of Combined Dynamic Environment Prediction
【24h】

A Novel Machine Learning Based Method of Combined Dynamic Environment Prediction

机译:一种基于机器学习的组合动态环境预测方法

获取原文
获取原文并翻译 | 示例

摘要

In practical engineerings, structures are often excited by different kinds of loads at the same time. How to effectively analyze and simulate this kind of dynamic environment of structure, named combined dynamic environment, is one of the key issues. In this paper, a novel prediction method of combined dynamic environment is proposed from the perspective of data analysis. First, the existence of dynamic similarity between vibration responses of the same structure under different boundary conditions is theoretically proven. It is further proven that this similarity can be established by a multiple-input multiple-output regression model. Second, two machine learning algorithms, multiple-dimensional support vector machine and extreme learning machine, are introduced to establish this model. To test the effectiveness of this method, shock and stochastic white noise excitations are acted on a cylindrical shell with two clamps to simulate different dynamic environments. The prediction errors on various measuring points are all less than ±3 dB, which shows that the proposed method can predict the structural vibration response under one boundary condition by means of the response under another condition in terms of precision and numerical stability.
机译:在实际工程中,结构常常同时受到不同种类的载荷的激励。如何有效地分析和模拟这种结构的动态环境,称为组合动态环境,是关键问题之一。从数据分析的角度出发,提出了一种新的组合动态环境预测方法。首先,从理论上证明了相同结构在不同边界条件下振动响应之间存在动态相似性。进一步证明,可以通过多输入多输出回归模型建立这种相似性。其次,介绍了两种机器学习算法,即多维支持向量机和极限学习机,以建立该模型。为了测试此方法的有效性,在带有两个夹具的圆柱壳上施加了冲击和随机白噪声激励,以模拟不同的动态环境。各个测量点的预测误差均小于±3 dB,表明所提方法可以在精度和数值稳定性方面,通过一种边界条件下的结构振动响应来预测另一种边界条件下的结构振动响应。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第6期|141849.1-141849.15|共15页
  • 作者单位

    College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China,State Key Laboratory for Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory for Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory for Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号