首页> 外文期刊>Mathematical Problems in Engineering >An Improved Harmony Search Based on Teaching-Learning Strategy for Unconstrained Optimization Problems
【24h】

An Improved Harmony Search Based on Teaching-Learning Strategy for Unconstrained Optimization Problems

机译:基于教学策略的无约束优化问题改进和谐搜索

获取原文
获取原文并翻译 | 示例

摘要

Harmony search (HS) algorithm is an emerging population-based metaheuristic algorithm, which is inspired by the music improvisation process. The HS method has been developed rapidly and applied widely during the past decade. In this paper, an improved global harmony search algorithm, named harmony search based on teaching-learning (HSTL), is presented for high dimension complex optimization problems. In HSTL algorithm, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to maintain the proper balance between convergence and population diversity, and dynamic strategy is adopted to change the parameters. The proposed HSTL algorithm is investigated and compared with three other state-of-the-art HS optimization algorithms. Furthermore, to demonstrate the robustness and convergence, the success rate and convergence analysis is also studied. The experimental results of 31 complex benchmark functions demonstrate that the HSTL method has strong convergence and robustness and has better balance capacity of space exploration and local exploitation on high dimension complex optimization problems.
机译:和谐搜索(HS)算法是一种新兴的基于人群的元启发式算法,它受到音乐即兴创作过程的启发。 HS方法发展迅速,在过去十年中得到了广泛应用。针对高维复杂性优化问题,提出了一种改进的全局和声搜索算法,即基于教学学习的和声搜索。在HSTL算法中,采用了四种策略(和谐记忆考虑,教学策略,局部音高调整和随机突变)来保持收敛和种群多样性之间的适当平衡,并采用动态策略来更改参数。我们对提出的HSTL算法进行了研究,并将其与其他三种最新的HS优化算法进行了比较。此外,为了证明鲁棒性和收敛性,还研究了成功率和收敛性分析。 31个复杂基准函数的实验结果表明,HSTL方法具有较强的收敛性和鲁棒性,并且在高维复杂优化问题上具有更好的空间探索和局部开发平衡能力。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第2期|413565.1-413565.29|共29页
  • 作者单位

    School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China;

    School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China;

    School of Science, Ningxia Medical University, Yinchuan, Ningxia 750004, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号