首页> 外文期刊>Mathematical Problems in Engineering >A SLAM Algorithm Based on Adaptive Cubature Kalman Filter
【24h】

A SLAM Algorithm Based on Adaptive Cubature Kalman Filter

机译:基于自适应Cubature卡尔曼滤波的SLAM算法

获取原文
获取原文并翻译 | 示例

摘要

We need to predict mathematical model of the system and a priori knowledge of the noise statistics when traditional simultaneous localization and mapping (SLAM) solutions are used. However, in many practical applications, prior statistics of the noise are unknown or time-varying, which will lead to large estimation errors or even cause divergence. In order to solve the above problem, an innovative cubature Kalman filter-based SLAM (CKF-SLAM) algorithm based on an adaptive cubature Kalman filter (ACKF) was established in this paper. The novel algorithm estimates the statistical parameters of the unknown system noise by introducing the Sage-Husa noise statistic estimator. Combining the advantages of the CKF-SLAM and the adaptive estimator, the new ACKF-SLAM algorithm can reduce the state estimated error significantly and improve the navigation accuracy of the SLAM system effectively. The performance of this new algorithm has been examined through numerical simulations in different scenarios. The results have shown that the position error can be effectively reduced with the new adaptive CKF-SLAM algorithm. Compared with other traditional SLAM methods, the accuracy of the nonlinear SLAM system is significantly improved. It verifies that the proposed ACKF-SLAM algorithm is valid and feasible.
机译:使用传统的同时定位和映射(SLAM)解决方案时,我们需要预测系统的数学模型和噪声统计的先验知识。但是,在许多实际应用中,噪声的先验统计是未知的或随时间变化的,这将导致较大的估计误差,甚至导致发散。为了解决上述问题,建立了一种基于自适应库曼卡尔曼滤波器(ACKF)的基于库曼卡尔曼滤波器的创新SLAM算法(CKF-SLAM)。该新算法通过引入Sage-Husa噪声统计估计量来估计未知系统噪声的统计参数。结合了CKF-SLAM和自适应估计器的优点,新的ACKF-SLAM算法可以显着减少状态估计误差,有效提高SLAM系统的导航精度。通过在不同情况下的数值模拟,已经检验了该新算法的性能。结果表明,采用新型自适应CKF-SLAM算法可以有效地减少位置误差。与其他传统的SLAM方法相比,非线性SLAM系统的精度大大提高。验证了所提出的ACKF-SLAM算法是正确可行的。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第9期|171958.1-171958.11|共11页
  • 作者单位

    College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China;

    College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China,Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada M3J 1P3;

    College of Science, Harbin Engineering University, Harbin, Heilongjiang 150001, China;

    College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China;

    College of Science, Harbin Engineering University, Harbin, Heilongjiang 150001, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号