首页> 外文期刊>Mathematical Problems in Engineering >A Quantitative Analysis on Two RFS-Based Filtering Methods for Multicell Tracking
【24h】

A Quantitative Analysis on Two RFS-Based Filtering Methods for Multicell Tracking

机译:两种基于RFS的多小区跟踪滤波方法的定量分析

获取原文
获取原文并翻译 | 示例

摘要

Multiobject filters developed from the theory of random finite sets (RFS) have recently become well-known methods for solving multiobject tracking problem. In this paper, we present two RFS-based filtering methods, Gaussian mixture probability hypothesis density (GM-PHD) filter and multi-Bernoulli filter, to quantitatively analyze their performance on tracking multiple cells in a series of low-contrast image sequences. The GM-PHD filter, under linear Gaussian assumptions on the cell dynamics and birth process, applies the PHD recursion to propagate the posterior intensity in an analytic form, while the multi-Bernoulli filter estimates the multitarget posterior density through propagating the parameters of a multi-Bernoulli RFS that approximates the posterior density of multitarget RFS. Numerous performance comparisons between the two RFS-based methods are carried out on two real cell images sequences and demonstrate that both yield satisfactory results that are in good agreement with manual tracking method.
机译:从随机有限集(RFS)理论发展而来的多目标滤波器最近已成为解决多目标跟踪问题的众所周知的方法。在本文中,我们提出了两种基于RFS的滤波方法,即高斯混合概率假设密度(GM-PHD)滤波器和多伯努利滤波器,以定量分析它们在一系列低对比度图像序列中跟踪多个细胞的性能。 GM-PHD滤波器在细胞动力学和生育过程的线性高斯假设下,应用PHD递归以解析形式传播后验强度,而多Bernoulli滤波器则通过传播多重参数来估计多目标后验密度-伯努利RFS,近似多目标RFS的后密度。两种基于RFS的方法之间的许多性能比较是在两个真实的细胞图像序列上进行的,结果表明两者均产生令人满意的结果,与手动跟踪方法非常吻合。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第2期|495765.1-495765.17|共17页
  • 作者

    Yayun Ren; Benlian Xu;

  • 作者单位

    School of Electrical & Automatic Engineering, Changshu Institute of Technology, Changshu 215500, China,School of Information & Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China;

    School of Electrical & Automatic Engineering, Changshu Institute of Technology, Changshu 215500, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号