首页> 外文期刊>Mathematical Problems in Engineering >Autonomous Navigation Based on SEIF with Consistency Constraint for C-Ranger AUV
【24h】

Autonomous Navigation Based on SEIF with Consistency Constraint for C-Ranger AUV

机译:基于SEIF的具有一致性约束的C-Ranger AUV自主导航

获取原文
获取原文并翻译 | 示例

摘要

An autonomous underwater vehicle (AUV) has to solve two essential problems in underwater environment, namely, localization and mapping. SLAM is one novel solution to estimate locations and maps simultaneously based on motion models and sensor measurements. Sparse extended information filter (SEIF) is an effective algorithm to reduce storage and computational costs of large-scale maps in the SLAM problem. However, there exists the inconsistency in the SEIF since the rank of the observability matrix of linearized error-state model in SLAM system is higher than that of the nonlinear SLAM system. By analyzing the consistency of the SEIF-based SLAM from the perspective of observability, a SLAM based on SEIF with consistency constraint (SEIF-CC SLAM) is developed to improve the estimator's consistency. The proposed algorithm uses the first-ever available estimates to calculate SEIF Jacobians for each of the state variables, called the First Estimates Jacobian (FEJ). Then, the linearized error-state model can keep the same observability as the underlying nonlinear SLAM system. The capability of autonomous navigation with the proposed algorithm is validated through simulations experiments and sea trials for a C-Ranger AUV. Experimental results show that the proposed SEIF-CC SLAM algorithm yields more consistent and accurate estimates compared with the SEIF-based SLAM.
机译:自主水下航行器(AUV)必须解决水下环境中的两个基本问题,即定位和地图绘制。 SLAM是一种新颖的解决方案,可基于运动模型和传感器测量值同时估算位置和地图。稀疏扩展信息过滤器(SEIF)是一种有效的算法,可以减少SLAM问题中大规模地图的存储和计算成本。然而,由于SLAM系统中线性化误差状态模型的可观察性矩阵的等级高于非线性SLAM系统,因此SEIF中存在不一致的地方。通过从可观察性角度分析基于SEIF的SLAM的一致性,开发了基于带有一致性约束的SEIF的SLAM(SEIF-CC SLAM)以提高估计器的一致性。所提出的算法使用有史以来第一个可用的估计来计算每个状态变量的SEIF雅可比行列式,称为第一估计雅可比行列式(FEJ)。然后,线性化的误差状态模型可以保持与基础非线性SLAM系统相同的可观察性。通过C-Ranger AUV的仿真实验和海试,验证了所提出算法的自主导航能力。实验结果表明,与基于SEIF的SLAM相比,所提出的SEIF-CC SLAM算法产生的估计更加一致和准确。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第16期|752360.1-752360.12|共12页
  • 作者单位

    Ocean Univ China, Informat Sci & Engn Coll, Qingdao 266100, Peoples R China.;

    Shandong Acad Sci, Inst Oceanog Instrumentat, Qingdao 266001, Peoples R China.;

    Ocean Univ China, Informat Sci & Engn Coll, Qingdao 266100, Peoples R China.;

    China Jiliang Univ, Dept Mech & Elect Engn, Hangzhou 310018, Peoples R China.;

    Ocean Univ China, Informat Sci & Engn Coll, Qingdao 266100, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号