首页> 外文期刊>Mathematical Problems in Engineering >Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms
【24h】

Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms

机译:基于改进人工鱼群算法的支持向量机特征选择与参数优化

获取原文
获取原文并翻译 | 示例

摘要

Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA) employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA) to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.
机译:信息和通信技术的飞速发展已使无处不在的计算和物联网变得流行且实用。这些应用程序会创建大量数据,这些数据可用于分析和分类,以帮助决策。在用于处理大数据的分类方法中,特征选择已被证明特别有效。一种常见方法涉及搜索与主题最相关或代表数据集最准确描述的功能子集。不幸的是,搜索此类子集是一个组合问题,可能会非常耗时。测量学算法通常用于促进特征的选择。人工鱼群算法(AFSA)利用鱼群行为的基础智能来克服组合问题的优化。事实证明,AFSA在各种应用中都取得了巨大成功。但是,仍然存在缺点,例如可能会陷入局部最优和缺乏多重性。这项研究提出了一种改进的AFSA(MAFSA),以改善支持向量机分类器的特征选择和参数优化。实验结果表明,与原始FASA相比,对于给定的UCI数据集,使用具有较少特征的子集,MAFSA在分类准确度方面具有优势。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第13期|604108.1-604108.9|共9页
  • 作者单位

    Natl Chung Hsing Univ, Dept Management Informat Syst, Taichung 40227, Taiwan.;

    Natl Chung Hsing Univ, Dept Management Informat Syst, Taichung 40227, Taiwan.;

    Overseas Chinese Univ, Dept Informat Technol, Taichung 40721, Taiwan.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号