首页> 外文期刊>Mathematical Problems in Engineering >Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks
【24h】

Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

机译:基于量子埃尔曼神经网络的短期负荷预测模型

获取原文
获取原文并翻译 | 示例

摘要

Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.
机译:建立了基于量子埃尔曼神经网络的短期负荷预测模型。量子计算和Elman反馈机制被集成到量子Elman神经网络中。量子计算可以有效地提高神经网络的逼近能力和信息处理能力。量子埃尔曼神经网络不仅具有前馈连接,还具有反馈连接。隐藏节点和上下文节点之间的反馈连接属于内部系统中的状态反馈,已经形成了特定的动态内存性能。相空间重构理论是构建预测模型的理论基础。训练样本是通过K近邻法形成的。通过实例仿真,测试结果表明,基于量子埃尔曼神经网络的模型优于基于量子前馈神经网络的模型,基于常规埃尔曼神经网络的模型以及基于常规前馈神经网络的模型。网络。因此,该模型可以有效地提高预测精度。本文的研究为基于量子埃尔曼神经网络的短期负荷预测模型的实际工程应用奠定了理论基础。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第9期|7910971.1-7910971.8|共8页
  • 作者

    Zhang Zhisheng; Gong Wenjie;

  • 作者单位

    Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Peoples R China;

    Qingdao Elect Power Co, Qingdao 266002, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号