首页> 外文期刊>Mathematical Problems in Engineering >A Dynamic Feature-Based Method for Hybrid Blurred/Multiple Object Detection in Manufacturing Processes
【24h】

A Dynamic Feature-Based Method for Hybrid Blurred/Multiple Object Detection in Manufacturing Processes

机译:制造过程中基于动态特征的混合模糊/多目标检测方法

获取原文
获取原文并翻译 | 示例

摘要

Vision-based inspection has been applied for quality control and product sorting in manufacturing processes. Blurred or multiple objects are common causes of poor performance in conventional vision-based inspection systems. Detecting hybrid blurred/multiple objects has long been a challenge in manufacturing. For example, single-feature-based algorithms might fail to exactly extract features when concurrently detecting hybrid blurred/multiple objects. Therefore, to resolve this problem, this study proposes a novel vision-based inspection algorithm that entails selecting a dynamic feature-based method on the basis of a multiclassifier of support vector machines (SVMs) for inspecting hybrid blurred/multiple object images. The proposed algorithm dynamically selects suitable inspection schemes for classifying the hybrid images. The inspection schemes include discrete wavelet transform, spherical wavelet transform, moment invariants, and edge-feature-descriptor-based classification methods. The classification methods for single and multiple objects are adaptive region growing-(ARG-) based and local adaptive region growing-(LARG-) based learning approaches, respectively. The experimental results demonstrate that the proposed algorithm can dynamically select suitable inspection schemes by applying a selection algorithm, which uses SVMs for classifying hybrid blurred/multiple object samples. Moreover, the method applies suitable feature-based schemes on the basis of the classification results for employing the ARG/LARG-based method to inspect the hybrid objects. The method improves conventional methods for inspecting hybrid blurred/multiple objects and achieves high recognition rates for that in manufacturing processes.
机译:基于视觉的检查已应用于制造过程中的质量控制和产品分类。在传统的基于视觉的检查系统中,模糊或多个对象是导致性能不佳的常见原因。长期以来,检测混合模糊/多个对象一直是制造中的挑战。例如,在同时检测混合模糊/多个对象时,基于单特征的算法可能无法正确提取特征。因此,为解决该问题,本研究提出了一种新颖的基于视觉的检查算法,该算法需要在支持向量机(SVM)的多分类器基础上选择一种基于动态特征的方法,以检查混合模糊/多目标图像。所提出的算法动态地选择合适的检查方案来对混合图像进行分类。检查方案包括离散小波变换,球形小波变换,矩不变性和基于边缘特征描述符的分类方法。用于单个和多个对象的分类方法分别是基于自适应区域增长(ARG)和基于局部自适应区域增长(LARG)的学习方法。实验结果表明,该算法可以通过应用选择算法动态选择合适的检测方案,该选择算法使用支持向量机对模糊/多个目标样本进行分类。此外,该方法基于分类结果应用适当的基于特征的方案,以采用基于ARG / LARG的方法来检查混合对象。该方法改进了用于检查混合模糊/多个物体的常规方法,并且在制造过程中实现了较高的识别率。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第5期|6848360.1-6848360.13|共13页
  • 作者

    Lin Tsun-Kuo;

  • 作者单位

    Shih Chien Univ, Dept Informat Technol & Commun, 200 Univ Rd, Kaohsiung 84550, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号