首页> 外文期刊>Mathematical Problems in Engineering >Particulate Scale Multiparticle Finite Element Method Modeling on the 2D Compaction and Release of Copper Powder
【24h】

Particulate Scale Multiparticle Finite Element Method Modeling on the 2D Compaction and Release of Copper Powder

机译:铜粉2D压实与铜粉释放的颗粒状尺度多粒子有限元法建模

获取原文
获取原文并翻译 | 示例
           

摘要

Herein, two-dimensional (2D) single-action die compaction process of copper (Cu) powder was simulated by the multiparticle finite element method (MPFEM) at particulate scale. The initial packing structure, generated by the discrete element method (DEM), was used as an input for the FEM model, where the mesh division of each particle was discretized. The evolution of macro- and microscopic properties, such as relative density, stress distribution, particle deformation, void filling behavior, and force transmission, during compaction and pressure release processes have been systematically studied. The results revealed that the force is mainly concentrated on largely deformed regions of the particles during compaction and formed a contact force network, which hindered the densification process. In the compact, the shorter side of the large void edges rendered higher stress than the longer side. On the other hand, the stress distribution of small void edges remained uniform. After pressure release, large residual stress was observed at the contact area of the adjacent particles and the maximum stress was observed at the particles' edges. Moreover, the residual stress did not proceed to the interior of the particles. Meanwhile, the stress of large void edges has been completely released but exhibited a nonuniform distribution. The smaller fraction of void filling resulted in a larger reduction of the released stress after pressure removal. Also, the particles closer to the upper die exhibited higher average equivalent von Mises stress inside the particles during compaction and pressure release processes.
机译:这里,通过在颗粒量表处模拟铜(Cu)粉末的二维(2D)单动芯片压实方法(MPFEM)。由离散元件方法(DEM)产生的初始填充结构被用作FEM模型的输入,其中离散化每个粒子的网状分割。已经系统地研究了宏观和微观性能的演变,例如相对密度,应力分布,颗粒变形,空隙填充行为和压力释放过程期间的相对密度,应力分布,颗粒变形,力传递。结果表明,在压实过程中,该力主要集中在颗粒的大部分变形区域上,并形成接触力网络,其阻碍了致密化过程。在紧凑的中,大空隙边缘的较短一侧呈现比长侧更高的应力。另一方面,小空隙边缘的应力分布仍然是均匀的。在压力释放后,在相邻颗粒的接触面积处观察到大的残余应力,并且在颗粒边缘观察到最大应力。此外,残余应力没有进入颗粒的内部。同时,大空隙边缘的应力已完全释放,但表现出不均匀的分布。在除去后,空隙填充的较小分数导致释放应力较大。而且,在压实和压力释放过程期间,更靠近上模的颗粒在颗粒内显示出更高的平均当量von误判。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第23期|5269302.1-5269302.10|共10页
  • 作者单位

    Univ Sci & Technol Liaoning Sch Mat & Met Anshan 114000 Peoples R China;

    Univ Sci & Technol Liaoning Sch Mat & Met Anshan 114000 Peoples R China;

    Univ Sci & Technol Liaoning Sch Mat & Met Anshan 114000 Peoples R China;

    Univ Sci & Technol Liaoning Sch Mat & Met Anshan 114000 Peoples R China;

    Univ Sci & Technol Liaoning Sch Mat & Met Anshan 114000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号