首页> 外文期刊>Mathematical Problems in Engineering >A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network
【24h】

A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network

机译:一种使用神经结构搜索神经网络的MEMS陀螺噪声抑制方法

获取原文
获取原文并翻译 | 示例

摘要

Inertial measurement unit (IMU) (an IMU usually contains three gyroscopes and accelerometers) is the key sensor to construct a self-contained inertial navigation system (INS). IMU manufactured through the Micromechanics Electronics Manufacturing System (MEMS) technology becomes more popular, due to its smaller column, lower cost, and gradually improved accuracy. However, limited by the manufacturing technology, the MEMS IMU raw measurement signals experience complicated noises, which cause the INS navigation solution errors diverge dramatically over time. For addressing this problem, an advanced Neural Architecture Search Recurrent Neural Network (NAS-RNN) was employed in the MEMS gyroscope noise suppressing. NAS-RNN was the recently invented artificial intelligence method for time series problems in data science community. Different from conventional method, NAS-RNN was able to search a more feasible architecture for selected application. In this paper, a popular MEMS IMU STIM300 was employed in the testing experiment, and the sampling frequency was 125Hz. The experiment results showed that the NAS-RNN was effective for MEMS gyroscope denoising; the standard deviation values of denoised three-axis gyroscope measurements decreased by 44.0%, 34.1%, and 39.3%, respectively. Compared with the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN), the NAS-RNN obtained further decreases by 28.6%, 3.7%, and 8.8% in standard deviation (STD) values of the signals. In addition, the attitude errors decreased by 26.5%, 20.8%, and 16.4% while substituting the LSTM-RNN with the NAS-RNN.
机译:惯性测量单元(IMU)(IMU通常包含三个陀螺仪和加速度计)是构建独立惯性导航系统(INS)的关键传感器。 IMU通过微机械电子制造系统制造(MEMS)技术变得更加流行,由于其较小的柱,成本较低,精度逐渐提高。然而,由制造技术的限制,MEMS IMU RAW测量信号经历复杂的噪音,这导致INS导航解决方案误差随着时间的推移急剧发作。为了解决这个问题,在MEMS陀螺仪噪声中采用先进的神经结构搜索复发性神经网络(NAS-RNN)。 NAS-RNN是最近发明的数据科学界时间序列问题的人工智能方法。与传统方法不同,NAS-RNN能够为所选应用程序搜索更可行的架构。本文在测试实验中使用了一种流行的MEMS IMU STIM300,采样频率为125Hz。实验结果表明,NAS-RNN对MEMS陀螺仪去噪是有效的;去轴三轴陀螺仪测量的标准偏差值分别降低44.0%,34.1%和39.3%。与长短短期记忆复发性神经网络(LSTM-RNN)相比,在信号的标准偏差(STD)值中进一步降低了28.6%,3.7%和8.8%的NAS-RNN。此外,用NAS-RNN代替LSTM-RNN的态度误差减少了26.5%,20.8%和16.4%。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第23期|5491243.1-5491243.9|共9页
  • 作者单位

    Nanjing Univ Sci & Technol Sch Automat Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci & Technol Sch Automat Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci & Technol Sch Automat Nanjing 210094 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号