首页> 外文期刊>Mathematical Problems in Engineering >Numerical Computation and Stability Analysis for the Fractional Subdiffusions with Spatial Variable Coefficients
【24h】

Numerical Computation and Stability Analysis for the Fractional Subdiffusions with Spatial Variable Coefficients

机译:空间变量系数的分数亚畴的数值计算与稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an efficient compact finite difference method for a class of time-fractional subdiffusion equations with spatially variable coefficients. Based on the L2-1 sigma approximation formula of the time-fractional derivative and a fourth-order compact finite difference approximation to the spatial derivative, an efficient compact finite difference method is developed. The local truncation error and the solvability of the developed method are discussed in detail. The unconditional stability of the resulting scheme and also its convergence of second-order in time and fourth-order in space are rigorously proved using a discrete energy analysis method. Numerical examples are provided to demonstrate the accuracy and the theoretical results.
机译:在本文中,我们提出了一种具有空间变量系数的一类时间分数沉降方程的有效紧凑的有限差分方法。基于时间分数衍生的L2-1Σ近似公式和空间衍生物的四阶紧凑有限差分近似,开发了一种有效的紧凑型有限差分方法。详细讨论了局部截断误差和开发方法的可解性。使用离散能量分析方法,所得方案的无条件稳定性以及其二阶及四排空间中的四阶的收敛性。提供了数值示例以证明准确性和理论结果。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第21期|4582020.1-4582020.14|共14页
  • 作者

    Ren Lei;

  • 作者单位

    Shangqiu Normal Univ Sch Math & Stat Shangqiu 476000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号