首页> 外文期刊>Mathematical Problems in Engineering >A Rolling Bearing Fault Diagnosis Method Based on EMD and Quantile Permutation Entropy
【24h】

A Rolling Bearing Fault Diagnosis Method Based on EMD and Quantile Permutation Entropy

机译:一种基于EMD和拟料置换熵的滚动轴承故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

The vibration signals resulting from rolling bearings are nonlinear and nonstationary, and an approach for the fault diagnosis of rolling bearings using the quantile permutation entropy and EMD (empirical mode decomposition) is proposed. Firstly, the EMD is used to decompose the rolling bearings vibration signal, and several IMFs (intrinsic mode functions) spanning different scales are obtained. Secondly, aiming at the shortcomings of the permutation entropy algorithm, a new permutation entropy algorithm based on sample quantile is proposed, and the quantile permutation entropy of the first few IMFs, which contain the main fault information, is calculated. The quantile permutation entropies are accordingly seen as the characteristic vector and then input to the particle swarm optimization and support vector machine. Finally, the proposed method is applied to the experimental data. The analysis results show that the proposed approach can effectively achieve fault diagnosis of rolling bearings.
机译:提出了由滚动轴承产生的振动信号是非线性的,并且提出了一种使用定量置换熵和EMD(经验模式分解)的滚动轴承故障诊断方法。首先,EMD用于分解滚动轴承振动信号,获得跨越不同尺度的多种IMF(内在模式函数)。其次,提出了一种基于样本量子的缺点,提出了一种基于样本量子的新置换熵算法,并计算包含主故障信息的前几个IMF的量级置换熵。因此,量子置换熵被视为特征向量,然后输入到粒子群优化和支持向量机。最后,将所提出的方法应用于实验数据。分析结果表明,该拟议方法可以有效地实现滚动轴承的故障诊断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号