首页> 外文期刊>Mathematical Problems in Engineering >Identifying APT Malware Domain Based on Mobile DNS Logging
【24h】

Identifying APT Malware Domain Based on Mobile DNS Logging

机译:基于移动DNS日志识别APT恶意软件域

获取原文
获取原文并翻译 | 示例

摘要

Advanced Persistent Threat (APT) is a serious threat against sensitive information. Current detection approaches are time-consuming since they detect APT attack by in-depth analysis of massive amounts of data after data breaches. Specifically, APT attackers make use of DNS to locate their command and control (C&C) servers and victims' machines. In this paper, we propose an efficient approach to detect APT malware C&C domain with high accuracy by analyzing DNS logs. We first extract 15 features from DNS logs of mobile devices. According to Alexa ranking and the VirusTotal's judgement result, we give each domain a score. Then, we select the most normal domains by the score metric. Finally, we utilize our anomaly detection algorithm, called Global Abnormal Forest (GAF), to identify malware C&C domains. We conduct a performance analysis to demonstrate that our approach is more efficient than other existing works in terms of calculation efficiency and recognition accuracy. Compared with Local Outlier Factor (LOF),k-Nearest Neighbor (KNN), and Isolation Forest (iForest), our approach obtains more than 99% F-M and R for the detection of C&C domains. Our approach not only can reduce data volume that needs to be recorded and analyzed but also can be applicable to unsupervised learning.
机译:高级持久威胁(APT)是对敏感信息的严重威胁。当前的检测方法很耗时,因为它们通过在数据泄露后对大量数据进行深入分析来检测APT攻击。具体来说,APT攻击者利用DNS来定位其命令与控制(C&C)服务器和受害者的机器。在本文中,我们提出了一种通过分析DNS日志来高精度检测APT恶意软件C&C域的有效方法。我们首先从移动设备的DNS日志中提取15个功能。根据Alexa排名和VirusTotal的判断结果,我们为每个域评分。然后,我们根据得分指标选择最正常的域。最后,我们利用称为全球异常森林(GAF)的异常检测算法来识别恶意软件C&C域。我们进行了性能分析,以证明我们的方法在计算效率和识别准确性方面比其他现有工作更有效。与局部离群因子(LOF),k最近邻(KNN)和隔离林(iForest)相比,我们的方法获得了超过99%的F-M和R用于检测C&C域。我们的方法不仅可以减少需要记录和分析的数据量,还可以应用于无监督学习。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|4916953.1-4916953.9|共9页
  • 作者单位

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China|Univ Elect Sci & Technol China, Ctr Cyber Secur, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China|Univ Elect Sci & Technol China, Ctr Cyber Secur, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Ctr Cyber Secur, Chengdu 611731, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号