首页> 外文期刊>Mathematical Problems in Engineering >A Multilevel Finite Element Variational Multiscale Method for Incompressible Navier-Stokes Equations Based on Two Local Gauss Integrations
【24h】

A Multilevel Finite Element Variational Multiscale Method for Incompressible Navier-Stokes Equations Based on Two Local Gauss Integrations

机译:基于两个局部高斯积分的不可压缩Navier-Stokes方程的多级有限元变分多尺度方法

获取原文
获取原文并翻译 | 示例

摘要

A multilevel finite element variational multiscale method is proposed and applied to the numerical simulation of incompressible Navier-Stokes equations. This method combines the finite element variational multiscale method based on two local Gauss integrations with the multilevel discretization using Newton correction on each step. The main idea of the multilevel finite element variational multiscale method is that the equations are first solved on a single coarse grid by finite element variational multiscale method; then finite element variational multiscale approximations are generated on a succession of refined grids by solving a linearized problem. Moreover, the stability analysis and error estimate of the multilevel finite element variational multiscale method are given. Finally, some numerical examples are presented to support the theoretical analysis and to check the efficiency of the proposed method. The results show that the multilevel finite element variational multiscale method is more efficient than the one-level finite element variational multiscale method, and for an appropriate choice of meshes, the multilevel finite element variational multiscale method is not only time-saving but also highly accurate.
机译:提出了一种多级有限元变分多尺度方法,并将其应用于不可压缩的Navier-Stokes方程的数值模拟。该方法将基于两个局部高斯积分的有限元变分多尺度方法与在每个步骤上使用牛顿校正的多级离散化相结合。多级有限元变分多尺度方法的主要思想是,首先通过有限元变分多尺度方法在单个粗网格上求解方程;然后,将其求解。然后通过求解线性化问题,在一系列精炼网格上生成有限元变分多尺度近似。此外,给出了多级有限元变分多尺度方法的稳定性分析和误差估计。最后,给出了一些数值算例,以支持理论分析并验证所提方法的有效性。结果表明,多级有限元变分多尺度方法比单级有限元变分多尺度方法更有效,对于网格的适当选择,多级有限元变分多尺度方法不仅节省时间,而且精度高。 。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第11期|4917054.1-4917054.13|共13页
  • 作者单位

    Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号