首页> 外文期刊>Mathematical Problems in Engineering >Solubility Optimal System for Supercritical Fluid Extraction Based on a New Nonlinear Temperature-Pressure Decoupling Model Constructed with Unequal-Interval Grey Optimal Models and Peng-Robinson Models
【24h】

Solubility Optimal System for Supercritical Fluid Extraction Based on a New Nonlinear Temperature-Pressure Decoupling Model Constructed with Unequal-Interval Grey Optimal Models and Peng-Robinson Models

机译:基于非等间隔灰色最优模型和Peng-Robinson模型构建的非线性温度-压力解耦模型的超临界流体萃取溶解度优化系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new solubility optimal system to improve the efficiency of supercritical fluid extraction (SFE). The major contribution is a nonlinear temperature-pressure decoupling model constructed with unequal-interval grey optimal models (UEIGOMs) and Peng-Robinson models (PRMs). The linear parts of temperature and pressure process can be constructed with UEIGOM, respectively. The nonlinear parts of temperature and pressure process can be described by PRMs, respectively. The whole nonlinear model cannot be input-output decoupled resulting from the singularity of decoupling matrix for PRM. This problem on input-output nondecoupling can be transformed to the problem on disturbance decoupling for a class of MIMO nonlinear systems. Therefore, the whole nonlinear coupling model can be disturbance decoupled. Furthermore, solubility optimal method is presented in the paper; it can calculate the optimal pressure according to the given temperature, namely, optimal working points, to maximize solubility for SFE process. The feasibility, effectiveness, and practicality of the proposed nonlinear temperature-pressure decoupling model constructed with UEIGOMs and PRMs are verified by SFE experiments in biphenyl. Experiments using the designed solubility optimal system are carried out to demonstrate the effectiveness in control scheme, simplicity in structure, and flexibility in implementation for the proposed solubility optimal system based on a new nonlinear temperature-pressure coupling model constructed with UEIGOMs and PRMs.
机译:本文提出了一种新的溶解度优化系统,以提高超临界流体萃取(SFE)的效率。主要贡献是使用不等间隔的灰色最优模型(UEIGOM)和Peng-Robinson模型(PRM)构建的非线性温度-压力去耦模型。可以使用UEIGOM分别构建温度和压力过程的线性部分。温度和压力过程的非线性部分可以分别用PRM描述。由于PRM的去耦矩阵的奇异性,导致整个非线性模型无法进行输入-输出解耦。对于一类MIMO非线性系统,可以将有关输入输出非去耦的问题转换为有关干扰去耦的问题。因此,整个非线性耦合模型可以进行干扰解耦。此外,本文提出了溶解度优化方法。它可以根据给定的温度计算最佳压力,即最佳工作点,以最大程度地提高SFE工艺的溶解度。通过SFE实验在联苯中验证了用UEIGOMs和PRMs构造的非线性温度-压力解耦模型的可行性,有效性和实用性。进行了使用设计的溶解度优化系统的实验,以证明基于基于UEIGOM和PRM的新的非线性温度-压力耦合模型,所提出的溶解度优化系统的控制方案,结构简单以及实现的灵活性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第4期|4817565.1-4817565.11|共11页
  • 作者

    Li Binglin; You Wen;

  • 作者单位

    Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130012, Jilin, Peoples R China;

    Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130012, Jilin, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号