首页> 外文期刊>Mathematical Problems in Engineering >Detecting Fraudulent Bank Account Based on Convolutional Neural Network with Heterogeneous Data
【24h】

Detecting Fraudulent Bank Account Based on Convolutional Neural Network with Heterogeneous Data

机译:基于卷积神经网络的异构数据欺诈银行账户检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting fraudulent accounts by using their transaction networks is helpful for proactively preventing illegal transactions in financial scenarios. In this paper, three convolutional neural network models, i.e., NTD-CNN, TTD-CNN, and HDF-CNN, are created to identify whether a bank account is fraudulent. The three models, same in model structure, are different in types of the input features. Firstly, we embed the bank accounts' historical trading records into a general directed and weighted transaction network. And then, a DirectedWalk algorithm is proposed for learning an account's network vector. DirectedWalk learns social representations of a network's vertices, by modeling a stream of directed and time-related trading paths. The local topological feature, generating by accounts' network vector, is taken as input of NTD-CNN, and TTD-CNN takes time series transaction feature as input. Finally, the two kinds of heterogeneous data, being integrated into a novel feature matrix, are fed into HDF-CNN for classifying bank accounts. The experimental results, conducted on a real bank transaction dataset, show the advantage of HDF-CNN over the existing methods.
机译:通过使用其交易网络检测欺诈性帐户有助于在财务情况下主动防止非法交易。在本文中,创建了三个卷积神经网络模型,即NTD-CNN,TTD-CNN和HDF-CNN,以识别银行账户是否欺诈。三个模型的模型结构相同,但输入要素的类型不同。首先,我们将银行帐户的历史交易记录嵌入到通用的定向加权交易网络中。然后,提出了一种DirectedWalk算法来学习帐户的网络矢量。 DirectedWalk通过对有向和与时间相关的交易路径进行建模,学习网络顶点的社交表示。由帐户的网络矢量生成的局部拓扑特征被用作NTD-CNN的输入,而TTD-CNN则将时间序列交易特征作为输入。最后,将两种异类数据集成到一个新颖的特征矩阵中,然后输入到HDF-CNN中以对银行帐户进行分类。在真实的银行交易数据集上进行的实验结果表明,HDF-CNN优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号