首页> 外文期刊>Mathematical Problems in Engineering >Research on Prediction Method of Performance Degradation of Flexible Optoelectronic Film Material Processing Equipment Based on Adaptive Fuzzy Clustering
【24h】

Research on Prediction Method of Performance Degradation of Flexible Optoelectronic Film Material Processing Equipment Based on Adaptive Fuzzy Clustering

机译:基于自适应模糊聚类的柔性光电薄膜材料加工设备性能退化预测方法研究

获取原文
获取原文并翻译 | 示例

摘要

Flexible photoelectric film is an anisotropic material. The slight change of equipment performance during processing is prone to cause deformation of the material. Therefore, it is important to predict the degradation of processing equipment performance. Since the performance degradation of flexible photoelectric film material Roll-to-Roll (R2R) processing equipment is a nonlinear process, this paper introduces an adaptive fuzzy clustering method to construct a fuzzy membership function model for calculating the performance degradation index of R2R processing equipment and studies the parameter solving method such as the AFCM division of the roller vibration data, the category center value of the fuzzy membership function, and the input data division area width. Finally, the performance degradation index calculation algorithm is designed. The roller shaft accelerated life test was carried out using self-made equipment. The test data were 1000 sets. The results showed that the root mean square eigenvalues and the kurtosis eigenvalues of the roller vibration data are sensitive to the performance degradation. The equipment performance curve described by the first and second types of performance degradation indicators was very stable in the early stage. After the 800th group, the curve continued to decrease, and the change was more severe, indicating that the performance degradation of the equipment is more serious. In the 980th group, the longer-lasting roller shaft was damaged, and the performance index value was about zero, which proved the correctness of the performance degradation prediction method proposed in this paper in calculating the performance degradation value of the equipment.
机译:柔性光电膜是各向异性材料。在加工过程中设备性能的细微变化易于引起材料变形。因此,预测处理设备性能的下降很重要。由于柔性光电薄膜材料卷对卷(R2R)处理设备的性能下降是非线性过程,因此,本文介绍了一种自适应模糊聚类方法,以构建模糊隶属函数模型来计算R2R处理设备的性能下降指标,并研究了参数求解方法,例如辊振动数据的AFCM划分,模糊隶属函数的类别中心值以及输入数据划分区域宽度。最后,设计了性能下降指标计算算法。辊轴加速寿命试验是使用自制设备进行的。测试数据为1000套。结果表明,辊振动数据的均方根特征值和峰度特征值对性能下降敏感。第一类和第二类性能下降指标描述的设备性能曲线在早期阶段非常稳定。第800组以后,曲线继续减小,变化更严重,表明设备的性能下降更为严重。在第980组中,寿命更长的辊轴受到损坏,性能指标值约为零,这证明了本文提出的性能下降预测方法在计算设备性能下降值中的正确性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第15期|5834096.1-5834096.9|共9页
  • 作者单位

    Guangdong Univ Technol Sch Electromech Engn Guangzhou Guangdong Peoples R China|Foshan Shike Intelligent Technol Co Ltd Foshan 528000 Peoples R China;

    Guangdong Univ Technol Sch Electromech Engn Guangzhou Guangdong Peoples R China;

    Foshan Shike Intelligent Technol Co Ltd Foshan 528000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号