首页> 外文期刊>Mathematical Problems in Engineering >Nonnegative Tensor-Based Linear Dynamical Systems for Recognizing Human Action from 3D Skeletons
【24h】

Nonnegative Tensor-Based Linear Dynamical Systems for Recognizing Human Action from 3D Skeletons

机译:基于非负张量的线性动力学系统,用于从3D骨骼识别人类动作

获取原文
获取原文并翻译 | 示例

摘要

Recently, skeleton-based action recognition has become a very important topic in the field of computer vision. It is a challenging task to accurately build a human action model and precisely distinguish similar human actions. In this paper, an action (skeleton sequence) is represented as a third-order nonnegative tensor time series to capture the original spatiotemporal information of the action. As a linear dynamical system (LDS) is an efficient tool for encoding the spatiotemporal data in various disciplines, this paper proposes a nonnegative tensor-based LDS (nLDS) to model the third-order nonnegative tensor time series. Nonnegative Tucker decomposition (NTD) is utilized to estimate the parameters of the nLDS model. These parameters are used to build extended observability sequence O-infinity(T) for the action, which implies that O-infinity(T) can be considered as the feature descriptor of the action. To avoid the limitations introduced by approximating O-infinity(T) with a finite-order matrix, we represent an action as a point on infinite Grassmann manifold comprising the orthonormalized extended observability sequences. The classification task can be performed by dictionary learning and sparse coding on the infinite Grassmann manifold. The experimental results on the MSR-Action3D, UTKinect-Action, and G3D-Gaming datasets demonstrate that the proposed approach achieves a better performance in comparison with the state-of-the-art methods.
机译:近年来,基于骨骼的动作识别已成为计算机视觉领域中非常重要的主题。准确地建立人类行为模型并精确区分相似的人类行为是一项艰巨的任务。在本文中,将动作(骨架序列)表示为三阶非负张量时间序列,以捕获动作的原始时空信息。由于线性动力学系统(LDS)是在各种学科中对时空数据进行编码的有效工具,因此,本文提出了一种基于非负张量的LDS(nLDS)来建模三阶非负张量时间序列。非负塔克分解(NTD)用于估计nLDS模型的参数。这些参数用于为动作建立扩展的可观察性序列O-infinity(T),这意味着O-infinity(T)可被视为动作的特征描述符。为了避免通过用有限阶矩阵近似O-infinity(T)引入的限制,我们将一个动作表示为包含正交归一化可扩展观测序列的无限Grassmann流形上的一个点。分类任务可以通过字典学习和无限格拉斯曼流形上的稀疏编码来执行。在MSR-Action3D,UTKinect-Action和G3D-Gaming数据集上的实验结果表明,与最先进的方法相比,该方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号