首页> 外文期刊>Mathematical Problems in Engineering >Short-Term Speed Prediction Using Remote Microwave Sensor Data: Machine Learning versus Statistical Model
【24h】

Short-Term Speed Prediction Using Remote Microwave Sensor Data: Machine Learning versus Statistical Model

机译:使用远程微波传感器数据的短期速度预测:机器学习与统计模型

获取原文
获取原文并翻译 | 示例

摘要

Recently, a number of short-term speed prediction approaches have been developed, in which most algorithms are based on machine learning and statistical theory. This paper examined the multistep ahead prediction performance of eight different models using the 2-minute travel speed data collected from three Remote Traffic Microwave Sensors located on a southbound segment of 4th ring road in Beijing City. Specifically, we consider five machine learning methods: Back Propagation Neural Network (BPNN), nonlinear autoregressive model with exogenous inputs neural network (NARXNN), support vector machine with radial basis function as kernel function (SVM-RBF), Support Vector Machine with Linear Function (SVM-LIN), and Multilinear Regression (MLR) as candidate. Three statistical models are also selected: Autoregressive Integrated Moving Average (ARIMA), Vector Autoregression (VAR), and Space-Time (ST) model. From the prediction results, we find the following meaningful results: (1) the prediction accuracy of speed deteriorates as the prediction time steps increase for all models; (2) the BPNN, NARXNN, and SVM-RBF can clearly outperform two traditional statistical models: ARIMA and VAR; (3) the prediction performance of ANN is superior to that of SVM and MLR; (4) as time step increases, the ST model can consistently provide the lowest MAE comparing with ARIMA and VAR.
机译:最近,已经开发了许多短期速度预测方法,其中大多数算法都基于机器学习和统计理论。本文使用从位于北京市四环路南段的三个远程交通微波传感器收集的2分钟行进速度数据,检验了八个不同模型的多步提前预测性能。具体来说,我们考虑了五种机器学习方法:反向传播神经网络(BPNN),带有外来输入神经网络的非线性自回归模型(NARXNN),以核函数为径向基函数的支持向量机(SVM-RBF),带有线性的支持向量机函数(SVM-LIN)和多线性回归(MLR)作为候选。还选择了三个统计模型:自回归综合移动平均值(ARIMA),矢量自回归(VAR)和时空(ST)模型。从预测结果中,我们发现以下有意义的结果:(1)对于所有模型,速度的预测精度随着预测时间步长的增加而降低; (2)BPNN,NARXNN和SVM-RBF明显优于两个传统统计模型:ARIMA和VAR; (3)人工神经网络的预测性能优于SVM和MLR; (4)随着时间步长的增加,与ARIMA和VAR相比,ST模型可以始终提供最低的MAE。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第1期|9236156.1-9236156.13|共13页
  • 作者单位

    Department of Automation Tsinghua National Laboratory for Information Science and Technology (TNlist) Tsinghua University Beijing 100084 China;

    Key Laboratory of Road and Traffic Engineering of Ministry of Education Tongji University Shanghai 201804 China;

    School of Transportation Science and Engineering Harbin Institute of Technology Harbin 150001 China;

    Department of Civil & Environmental Engineering University of Washington P.O. Box 352700 Seattle WA 98195 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号