首页> 外文期刊>Mathematical Problems in Engineering >Object Detection Based on Fast/Faster RCNN Employing Fully Convolutional Architectures
【24h】

Object Detection Based on Fast/Faster RCNN Employing Fully Convolutional Architectures

机译:基于全卷积架构的快速/快速RCNN目标检测

获取原文
获取原文并翻译 | 示例

摘要

Modern object detectors always include two major parts: a feature extractor and a feature classifier as same as traditional object detectors. The deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classifier. In this paper, we declare that it is beneficial for the detection performance to elaboratively design deep convolutional networks (ConvNets) of various depths for feature classification, especially using the fully convolutional architectures. In addition, this paper also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a classifier based on convolutional layer is more effective for object detection than that based on fully connected layer and that the better detection performance can be achieved by employing deeper ConvNets as the feature classifier.
机译:现代对象检测器始终包括两个主要部分:与传统对象检测器相同的是特征提取器和特征分类器。目前采用更深,更广泛的卷积架构作为特征提取器。但是,许多著名的对象检测系统(例如快速/快速RCNN)仅将简单的完全连接的层视为特征分类器。在本文中,我们声明精心设计各种深度的深度卷积网络(ConvNets)进行特征分类(特别是使用完全卷积架构)对检测性能有利。此外,本文还演示了如何在Fast / Faster RCNN中采用完全卷积架构。实验结果表明,基于卷积层的分类器比基于全连接层的分类器更有效,通过使用更深的卷积网络作为特征分类器可以实现更好的检测性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第1期|3598316.1-3598316.7|共7页
  • 作者单位

    Natl Univ Def Technol ATR Natl Lab Changsha 410073 Hunan Peoples R China;

    Natl Univ Def Technol State Key Lab Complex Electromagnet Environm Effe Changsha 410073 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号