首页> 外文期刊>Mathematical Problems in Engineering >A Novel Short-Medium Term Satellite Clock Error Prediction Algorithm Based on Modified Exponential Smoothing Method
【24h】

A Novel Short-Medium Term Satellite Clock Error Prediction Algorithm Based on Modified Exponential Smoothing Method

机译:基于改进指数平滑法的新型中短期卫星时钟误差预测算法

获取原文
获取原文并翻译 | 示例

摘要

Clock error prediction is important for satellites while their clocks could not transfer time message with the stations in earth. It puts forth a novel short-medium term clock error prediction algorithm based on modified differential exponential smoothing (ES). Firstly, it introduces the basic double ES (DES) and triple ES (TES). As the weighted parameter in ES is fixed, leading to growing predicted errors, a dynamic weighted parameter based on a sliding window (SW) is put forward. And in order to improve the predicted precision, it brings in grey mode (GM) to learn the predicted errors of DES (TES) and combines the DES (TES) predicted results with the results of GM prediction from error learning. From examples' analysis, it could conclude that the short term predicted precisions of algorithms based on ES with GM error learning are less than 0.4ns, where GM error learning could better the performances slightly. And for the medium term, it could conclude that the fusion algorithm in DES (TES) with error learning in GM based on SW could reduce the predicted errors in 35.37% (66.34%) compared with DES (TES) alone. In medium term clock error prediction, the predicted precision of TES is worse than DES, which is roughly in the same level of GM.
机译:时钟误差预测对于卫星很重要,而卫星的时钟无法与地球站传输时间消息。提出了一种基于改进的差分指数平滑算法的中短期时钟误差预测算法。首先,介绍了基本的双ES(DES)和三重ES(TES)。由于ES中的加权参数是固定的,导致预测误差不断增加,因此提出了基于滑动窗口(SW)的动态加权参数。并且为了提高预测精度,它引入了灰度模式(GM)来学习DES(TES)的预测误差,并将DES(TES)预测结果与误差学习中的GM预测结果相结合。从实例分析中可以得出结论,基于ES的带有GM错误学习的算法的短期预测精度小于0.4ns,其中GM错误学习可以稍微改善性能。从中期来看,可以得出结论:与仅基于DES(TES)的DES(TES)融合算法结合基于SW的GM中的错误学习,融合算法可以将预测错误减少35.37%(66.34%)。在中期时钟误差预测中,TES的预测精度比DES差,而DES的精度大致处于GM的相同水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号