首页> 外文期刊>Mathematical Problems in Engineering >Vision-Based Lane Departure Detection Using a Stacked Sparse Autoencoder
【24h】

Vision-Based Lane Departure Detection Using a Stacked Sparse Autoencoder

机译:使用堆叠式稀疏自动编码器的基于视觉的车道偏离检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a lane departure detection approach that utilizes a stacked sparse autoencoder (SSAE) for vehicles driving on motorways or similar roads. Image preprocessing techniques are successfully executed in the initialization procedure to obtain robust region-of-interest extraction parts. Lane detection operations based on Hough transform with a polar angle constraint and a matching algorithm are then implemented for two-lane boundary extraction. The slopes and intercepts of lines are obtained by converting the two lanes from polar to Cartesian space. Lateral offsets are also computed as an important step of feature extraction in the image pixel coordinate without any intrinsic or extrinsic camera parameter. Subsequently, a softmax classifier is designed with the proposed SSAE. The slopes and intercepts of lines and lateral offsets are the feature inputs. A greedy, layer-wise method is employed based on the inputs to pretrain the weights of the entire deep network. Fine-tuning is conducted to determine the global optimal parameters by simultaneously altering all layer parameters. 'the outputs are three detection labels. Experimental results indicate that the proposed approach can detect lane departure robustly with a high detection rate. The efficiency of the proposed method is demonstrated on several real images.
机译:本文提出了一种车道偏离检测方法,该方法利用堆叠式稀疏自动编码器(SSAE)来在高速公路或类似道路上行驶的车辆。在初始化过程中成功执行了图像预处理技术,以获得鲁棒的感兴趣区域提取部分。然后,基于具有极角约束的霍夫变换和匹配算法,实现车道检测操作,以进行两车道边界提取。线的斜率和截距是通过将两条车道从极坐标空间转换为笛卡尔空间而获得的。在没有任何内部或外部相机参数的情况下,横向偏移也将作为图像像素坐标中特征提取的重要步骤进行计算。随后,利用拟议的SSAE设计softmax分类器。要素的输入是直线的斜率和截距以及横向偏移。基于输入采用贪婪的逐层方法来预训练整个深度网络的权重。通过同时更改所有层参数来进行微调以确定全局最佳参数。 '输出是三个检测标签。实验结果表明,该方法能够以较高的检出率可靠地检测车道偏离。在几个真实图像上证明了该方法的有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第11期|9837359.1-9837359.15|共15页
  • 作者单位

    Shandong Univ, Sch Mech Engn, Minist Educ, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Shandong, Peoples R China;

    Shandong Univ, Sch Mech Engn, Jinan 250061, Shandong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号