首页> 外文期刊>Mathematical Problems in Engineering >Online State of Charge Estimation for Lithium-Ion Battery by Combining Incremental Autoregressive and Moving Average Modeling with Adaptive H-Infinity Filter
【24h】

Online State of Charge Estimation for Lithium-Ion Battery by Combining Incremental Autoregressive and Moving Average Modeling with Adaptive H-Infinity Filter

机译:通过将增量自回归和移动平均建模与自适应H-无穷大滤波器相结合,可以在线估算锂离子电池的充电状态

获取原文
获取原文并翻译 | 示例

摘要

The state of charge (SOC) estimation is one of the most important features in battery management system (BMS) for electric vehicles (EVs). In this article, a novel equivalent-circuit model (ECM) with an extra noise sequence is proposed to reduce the adverse effect of model error. Model parameters identification method with variable forgetting factor recursive extended least squares (VFFRELS), which combines a constructed incremental autoregressive and moving average (IARMA) model with differential measurement variables, is presented to obtain the ECM parameters. The independent open circuit voltage (OCV) estimator with error compensation factors is designed to reduce the OCV error of OCV fitting model. Based on the IARMA battery model analysis and the parameters identification, an SOC estimator by adaptive H-infinity filter (AHIF) is formulated. The adaptive strategy of the AHIF improves the numerical stability and robust performance by synchronous adjusting noise covariance and restricted factor. The results of experiment and simulation have verified that the proposed approach has superior advantage of parameters identification and SOC estimation to other estimation methods.
机译:充电状态(SOC)估计是电动汽车(EV)的电池管理系统(BMS)中最重要的功能之一。在本文中,提出了一种具有额外噪声序列的新型等效电路模型(ECM),以减少模型误差的不利影响。提出了一种结合变量遗忘因子递推扩展最小二乘法(VFFRELS)的模型参数识别方法,该模型将构造的增量自回归和移动平均(IARMA)模型与差分测量变量相结合,以获得ECM参数。具有误差补偿因子的独立开路电压(OCV)估计器旨在减少OCV拟合模型的OCV误差。在IARMA电池模型分析和参数辨识的基础上,建立了基于自适应H-无穷大滤波器(AHIF)的SOC估计器。 AHIF的自适应策略通过同步调整噪声协方差和限制因素来提高数值稳定性和鲁棒性能。实验和仿真结果表明,与其他估计方法相比,该方法具有参数辨识和SOC估计的优势。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第8期|7480602.1-7480602.16|共16页
  • 作者单位

    Guilin Univ Elect Technol, Sch Elect & Automat, Guilin 541004, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China;

    Guilin Univ Aerosp Technol, Sch Elect & Automat, Guilin 541004, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号