首页> 外文期刊>Mathematical notes >On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces
【24h】

On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces

机译:在消失的广义变量指数MORREY空间和应用程序中的奇异运算符对Bergman型空间

获取原文
获取原文并翻译 | 示例

摘要

We give a proof of the boundedness of the Bergman projection in generalized variable-exponent vanishing Morrey spaces over the unit disc and the upper half-plane. To this end, we prove the boundedness of the Calderon-Zygmund operators on generalized variable-exponent vanishing Morrey spaces. We give the proof of the latter in the general context of real functions on R~n, since it is new in such a setting and is of independent interest. We also study the approximation by mollified dilations and estimate the growth of functions near the boundary.
机译:我们在单位盘上的广义可变指数消失的变量空间和上半平面上给出了伯格劳投影的界限的证据。为此,我们证明了Calderon-Zygmund运算符的界限在广义可变指数消失的Morrey空间上。我们在R〜N上的真实功能的一般背景下给出了后者的证据,因为它在这种设置中是新的,并且是独立的兴趣。我们还研究了Mollified扩张的近似,并估计了边界附近的功能的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号