首页> 外文期刊>Mathematical notes >On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images
【24h】

On the Metric Space of Closed Subsets of a Metric Space and Set-Valued Maps with Closed Images

机译:关于度量空间的封闭子集的度量空间和具有封闭图像的集值映射

获取原文
获取原文并翻译 | 示例

摘要

The space clos( X ) of all nonempty closed subsets of an unbounded metric space X is considered. The space clos(X) is endowed with a metric in which a sequence of closed sets converges if and only if the distances from these sets to a fixed point θ are bounded and, for any r , the sequence of the unions of the given sets with the exterior balls of radius r centered at θ converges in the Hausdorff metric. The metric on clos( X ) thus defined is not equivalent to the Hausdorff metric, whatever the initial metric space X . Conditions for a set to be closed, totally bounded, or compact in clos( X ) are obtained; criteria for the bounded compactness and separability of clos( X ) are given. The space of continuous maps from a compact space to clos( X ) is considered; conditions for a set to be totally bounded in this space are found.
机译:考虑无界度量空间X的所有非空封闭子集的空间clos(X)。空间clos(X)具有一个度量,在该度量中,当且仅当从这些集合到固定点θ的距离是有界的并且对于任何r,给定集合的并列序列时,闭合集合的序列才会收敛。半径为r的外部球以θ为中心收敛于Hausdorff度量。这样定义的clos(X)度量不等于Hausdorff度量,无论初始度量空间X是什么。获得在clos(X)中封闭,完全有界或紧凑的集合的条件;给出了clos(X)的有限紧致性和可分离性的标准。考虑了从紧空间到clos(X)的连续映射空间;找到一个集合完全在该空间中有界的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号