首页> 外文期刊>Mathematical notes >Asymptotics of Eigenvalues of the Jacobi Matrix of a System of Semilinear Parabolic Equations
【24h】

Asymptotics of Eigenvalues of the Jacobi Matrix of a System of Semilinear Parabolic Equations

机译:半线性抛物方程组Jacobi矩阵特征值的渐近性

获取原文
获取原文并翻译 | 示例

摘要

We consider the stationary spatially homogeneous solutions of a system of semilinear parabolic equations in a bounded domain with Neumann boundary conditions. It is well known that the stability of such solutions is related to the signs of the real parts of the eigenvalues of the linearized operator composed of the Jacobi matrix of the dynamical system and the differential operator generated by a diffusion process. We obtain the asymptotics of these eigenvalues. We also study the special case in which the diffusion operator is described by matrices containing Jordan blocks, which corresponds to the case of cross diffusion.
机译:我们考虑具有Neumann边界条件的有界域中的半线性抛物方程组的平稳空间齐次解。众所周知,这种解的稳定性与由动力系统的雅可比矩阵和由扩散过程产生的微分算子组成的线性算子的特征值的实部符号有关。我们获得了这些特征值的渐近性。我们还研究了特殊情况,其中扩散算子由包含约旦块的矩阵描述,这与交叉扩散的情况相对应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号